scholarly journals Suitability Evaluation of Underutilized Crops Under Future Climate Change Using Ecocrop Model: A Case of Bambara Groundnut in Nigeria

Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 53
Author(s):  
Ezekannagha ◽  
Crespo

The agricultural crop system depends on a few major staple crops such as rice, maize, wheat, sorghum, soybeans, amongst others for food production, leaving certain crops underutilized. Even though these underutilized crops have the potentials of diversifying and sustaining the food and nutrition systems while presenting different resilience to climatic conditions. As the world’s population continues to increase and climate change keeps occurring, these major staple crops are being negatively affected. This study focuses on evaluating the spatial suitability of Bambara groundnut (Vigna subterranea (L.) Verdc.), an indigenous underutilized African legume under past and future climate scenarios in Nigeria, West Africa, where farmers depend mostly on rainfed agriculture. Ten bias-corrected CMIP5 Global climate models simulation downscaled by the Coordinated Regional Climate Downscaling Experiment (CORDEX) regional climate model, RCA4 under the Representative Concentration Pathway (RCP) 8.5 scenario was used to drive the crop suitability model-Ecocrop. The spatial changes in Bambara groundnut suitability were evaluated under 1 past climate period -historical (1980-2010), and 3 future climate period - near future (2010-2040), mid-century (2040-2070), and end century (2070-2099). Our result projects southern Nigeria to remain suitable and an increase in the suitable areas across other parts of the country in future climates. Projected changes were observed in the planting month for Bambara groundnut. The study is relevant and will contribute to the discussions of increasing the number of crops cultivated under climate change as an adaptation strategy towards ensuring a sustainable food system in Nigeria.

2011 ◽  
Vol 116 (D22) ◽  
pp. n/a-n/a ◽  
Author(s):  
E. Katragkou ◽  
P. Zanis ◽  
I. Kioutsioukis ◽  
I. Tegoulias ◽  
D. Melas ◽  
...  

2014 ◽  
Vol 5 (1) ◽  
pp. 617-647
Author(s):  
Y. Yin ◽  
Q. Tang ◽  
X. Liu

Abstract. Climate change may affect crop development and yield, and consequently cast a shadow of doubt over China's food self-sufficiency efforts. In this study we used the model projections of a couple of global gridded crop models (GGCMs) to assess the effects of future climate change on the potential yields of the major crops (i.e. wheat, rice, maize and soybean) over China. The GGCMs were forced with the bias-corrected climate data from 5 global climate models (GCMs) under the Representative Concentration Pathways (RCP) 8.5 which were made available by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The results show that the potential yields of rice may increase over a large portion of China. Climate change may benefit food productions over the high-altitude and cold regions where are outside current main agricultural area. However, the potential yield of maize, soybean and wheat may decrease in a large portion of the current main crop planting areas such as North China Plain. Development of new agronomic management strategy may be useful for coping with climate change in the areas with high risk of yield reduction.


2020 ◽  
Vol 10 (11) ◽  
pp. 3671 ◽  
Author(s):  
Muhammad Touseef ◽  
Lihua Chen ◽  
Tabinda Masud ◽  
Aziz Khan ◽  
Kaipeng Yang ◽  
...  

Hydrological models are widely applied for simulating complex watershed processes and directly linking meteorological, topographical, land-use, and geological conditions. In this study, the Soil and Water Assessment Tool (SWAT) was calibrated at two monitoring stations, which improved model performance and increased the reliability of flow predictions in the Upper Xijiang River Basin. This study evaluated the potential impacts of climate change on the streamflow and water yield of the Upper Xijiang River Basin using Arc-SWAT. The model was calibrated (1991–1997) and validated (1998–2001) using the Sequential Uncertainty Fitting Algorithm (SUFI-2). Model calibration and validation suggest a good match between the measured and simulated monthly streamflow, indicating the applicability of the model for future daily streamflow predictions. Large negative changes of low flows are projected under future climate scenarios, exhibiting a 10% and 30% decrease in water yield over the watershed on a monthly scale. Overall, findings generally indicated that winter flows are expected to be affected the most, with a maximum impact during the January–April period, followed by the wet monsoon season in the May–September period. Water balance components of the Upper Xijiang River Basin are expected to change significantly due to the projected climate change that, in turn, will seriously affect the water resources and streamflow patterns in the future. Thus, critical problems, such as ground water shortages, drops in agricultural crop yield, and increases in domestic water demand are expected at the Xijiang River Basin.


2013 ◽  
Vol 70 (2) ◽  
pp. 159-168 ◽  
Author(s):  
Richard D. Hedger ◽  
Line E. Sundt-Hansen ◽  
Torbjørn Forseth ◽  
Ola Ugedal ◽  
Ola H. Diserud ◽  
...  

We predict an increase in parr recruitment and smolt production of Atlantic salmon (Salmo salar) populations along a climate gradient from the subarctic to the Arctic in western and northern Norway in response to future climate change. Firstly, we predicted local stream temperature and discharge from downscaled data obtained from Global Climate Models. Then, we developed a spatially explicit individual-based model (IBM) parameterized for the freshwater stage, with combinations of three different postsmolt survival probabilities reflecting different marine survival regimes. The IBM was run for three locations: southern Norway (∼59°N), western Norway (∼62°N), and northern Norway (∼70°N). Increased temperatures under the future climate regimes resulted in faster parr growth, earlier smolting, and elevated smolt production in the western and northern locations, in turn leading to increased egg deposition and elevated recruitment into parr. In the southern location, density-dependent mortality of parr resulting from low summer wetted-areas reduced predicted future smolt production in comparison to the other locations. It can be inferred, therefore, that climate change may have both positive and negative effects on anadromous fish abundance within the subarctic–Arctic according to geographical region.


2021 ◽  
Author(s):  
Cristina Andrade ◽  
Joana Contente

<p>Projections of the Köppen-Geiger climate classification under future climate change for the Iberian Peninsula (IP) are investigated by using a seven-ensemble mean of regional climate models (RCMs) attained from EURO-CORDEX. Maps with predicted future scenarios for temperature, precipitation and Köppen-Geiger classification are analyzed under RCP4.5 and RCP8.5 in Iberia. Widespread statistically significant shifts in temperature, precipitation and climate regimes are projected between 2041 and 2070, with higher expression under RCP8.5. An overall increase of temperatures and a decrease of precipitation in the south-southeast is predicted. Of the two climate types dry (B) and temperate (C), the dominant one was C in 86% of the Iberian territory for 1961-1990, predicted to decrease by 8.0% towards 2041-2070 under RCP4.5 (9.1% under RCP8.5). The hot-summer Mediterranean climate (CSa) will progressively replaces CSb (warm-summer) type towards north in the northwestern half of Iberia until 2070. This shift, depicted by the SSIM index, is noticeable in Portugal with a projected establishment of the CSa climate by 2041-2070. A predicted retreat of humid subtropical (Cfa) and temperate oceanic (Cfb) areas in the northeast towards Pyrenees region is noteworthy, alongside an increase of desert (BW) and semi-desert (BS) climates (7.8% and 9%) that progressively sets in the southeast (between Granada and Valencia). Climate types BSh and BWh (hot semi-desert and hot-desert, respectively), non-existent in 1961-1990 period, are projected to represent 2.8% of territory in 2041-2070 under RCP4.5 (5% under RCP8.5). The statistically significant projected changes hint at the disappearance of some vegetation species in certain regions of Iberia, with an expected increase of steppe, bush, grassland and wasteland vegetation cover, typical of dry climates in the southeast.</p><p><strong>Funding:</strong> This research was funded by National Funds by FCT - Portuguese Foundation for Science and Technology, under the project <strong>UIDB/04033/2020.</strong></p>


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Abu Reza Md. Towfiqul Islam ◽  
Shuanghe Shen ◽  
Zhenghua Hu ◽  
M. Atiqur Rahman

Drought hazard is one of the main hindrances for sustaining food security in Bangladesh, and climate change may exacerbate it in the next several decades. This study aims to evaluate drought hazard at current and future climate change conditions in theBoropaddy cultivated areas of western Bangladesh using simulated climate data from the outputs of three global climate models (GCMs) based on the SRES A1B scenario for the period between 2041 and 2070. The threshold level of Standardized Precipitation Evapotranspiration Index (SPEI) was employed to identify drought events and its probability distribution function (PDF) was applied to create the drought hazard index. The study demonstrates that enhancement of potential evapotranspiration (PET) will surpass that of precipitation, resulting in intensified drought events in future. In addition, the PDFs of drought events will move the upper tail in future period compared to the baseline. The results showed that the southwestern region was more severe to the drought hazard than the northwestern region during the period of 1984 to 2013. From the results of three GCMs, in the mid-century period, drought hazard will slightly increase in the northwestern region and flatten with a decrease in the southwestern region. The outcomes will help to allocate agricultural adaptation plans under climate change condition in Bangladesh.


2021 ◽  
Author(s):  
Sam Grainger ◽  
Suraje Dessai ◽  
Joseph Daron ◽  
Andrea Taylor ◽  
Yim Ling Siu

<p>Climate change knowledge can inform regional and local adaptation decisions. However, estimates of future climate are uncertain and methods for assessing uncertainties typically rely on the results of climate model simulations, which are constrained by the quality of assumptions used in model experiments and the limitations of available models. To strengthen knowledge for adaptation decisions, we use structured expert elicitation to assess future climate change in the Lower Yangtze region in China. We elicit judgements on future changes in temperature and precipitation as well as uncertainty sources, comparing elicited judgements and model outputs from phase 5 of the Couple Model Intercomparison Project (CMIP5). We find high consensus amongst experts that the Lower Yangtze region will be warmer in the coming decades, albeit with differences in the magnitude of change. There is less consensus around the direction and magnitude of change for future precipitation change in the region. When compared with CMIP5 model outputs, experts provide similar or narrower uncertainty ranges for temperature change and diverse ranges for precipitation. Experts considered additional factors (e.g. model credibility, observations, theory and paleo-climatic evidence) and uncertainties not usually represented in conventional modelling approaches. We explore the value in bringing together multiple lines of evidence in the context of climate services, arguing that while decision makers should not rely solely on expert judgements, this information can complement model information to strengthen regional climate change knowledge. These multiple lines of evidence can help in building dialogue between climate experts and regional stakeholders, contributing to the development of climate services. </p>


SOLA ◽  
2017 ◽  
Vol 13 (0) ◽  
pp. 219-223 ◽  
Author(s):  
Akihiko Murata ◽  
Hidetaka Sasaki ◽  
Hiroaki Kawase ◽  
Masaya Nosaka ◽  
Toshinori Aoyagi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document