scholarly journals Measuring the Boxing Punch: Development and Calibration of a Non-Embedded In-Glove Piezo-Resistive Sensor

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 13
Author(s):  
Andrew Jovanovski ◽  
Brad Stappenbelt

Biomechanics measurement in boxing is becoming increasingly important for the analysis of boxing technique in order to promote exciting and safer boxing at both amateur and professional levels. Despite this interest, there have been few experiments within this field of research that have utilised a non-embedded in-glove sensor to measure the resultant power generated by a boxing punch. The aim of this study was to develop a dynamic measurement system, utilising a non-embedded in-glove sensor system. Two sensors were utilised; a tri-axial accelerometer to measure acceleration and a piezo-resistive force sensor hand wrap to measure the impact force of a boxer’s punch. The piezo-resistive system was calibrated using a static measurement system utilising simple load cells for force and laser displacement sensors for glove speed measurements. The system was tested on 31 novice boxing athletes participating in the study. A mean impact force of 2.31 kN ± 3.28 kN, an instantaneous velocity prior to impact of 4.73 m/s ± 0.35 m/s, an impact acceleration of 91 g ± 11 g, deceleration immediately following impact of 223 g ± 21 g and a maximum power dissipation of 11.2 kW ± 2.05 kW were measured. These values correspond well with prior studies using alternate measurement approaches. The calibration of the non-embedded in-glove piezo-resistive force sensor on the static measurement system yielded a correlation coefficient of 0.85.

2016 ◽  
Vol 698 ◽  
pp. 73-79
Author(s):  
Naoki Miyashita ◽  
Kazuhide Watanabe ◽  
Akihiro Takita ◽  
Mitra Djamal ◽  
Takao Yamaguchi ◽  
...  

At present, a method for evaluating dynamic characteristics of force sensors against small and short-duration impact forces has been developed. In this method, a small mass collides with a force sensor and the impact force is measured with high accuracy as the inertial force of the mass. A pneumatic linear bearing is used in order to realize linear motion with sufficiently small friction acting on the mass, i.e., the moving part of the bearing. Using this method, the dynamic characteristics of the force sensor are evaluated in detail: small and various-duration impact forces with maximum values of approximately 0.4-6.0 N and full width at half maximum (FWHM) of approximately 0.6-2.8 ms are applied to the force sensor and the impact responses of the force sensor are evaluated.


2019 ◽  
Vol 7 (2) ◽  
pp. 205-213
Author(s):  
Yong-Doo Kim ◽  
Seung-Jae Lim ◽  
Hyun-Ung Bae ◽  
Kyoung-Ju Kim ◽  
Chin-Ok Lee ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (2) ◽  
pp. 466
Author(s):  
Włodzimierz Kęska ◽  
Jacek Marcinkiewicz ◽  
Łukasz Gierz ◽  
Żaneta Staszak ◽  
Jarosław Selech ◽  
...  

The continuous development of computer technology has made it applicable in many scientific fields, including research into a wide range of processes in agricultural machines. It allows the simulation of very complex physical phenomena, including grain motion. A recently discovered discrete element method (DEM) is used for this purpose. It involves direct integration of equations of grain system motion under the action of various forces, the most important of which are contact forces. The method’s accuracy depends mainly on precisely developed mathematical models of contacts. The creation of such models requires empirical validation, an experiment that investigates the course of contact forces at the moment of the impact of the grains. To achieve this, specialised test stations equipped with force and speed sensors were developed. The correct selection of testing equipment and interpretation of results play a decisive role in this type of research. This paper focuses on the evaluation of the force sensor dynamic properties’ influence on the measurement accuracy of the course of the plant grain impact forces against a stiff surface. The issue was examined using the computer simulation method. A proprietary computer software with the main calculation module and data input procedures, which presents results in a graphic form, was used for calculations. From the simulation, graphs of the contact force and force signal from the sensor were obtained. This helped to clearly indicate the essence of the correct selection of parameters used in the tests of sensors, which should be characterised by high resonance frequency.


2021 ◽  
Vol 60 (1) ◽  
pp. 145-157
Author(s):  
Yi Luo ◽  
Ke Yuan ◽  
Lumin Shen ◽  
Jiefu Liu

Abstract In this study, a series of in-plane hexagonal honeycombs with different Poisson's ratio induced by topological diversity are studied, considering re-entrant, semi-re-entrant and convex cells, respectively. The crushing strength of honeycomb in terms of Poisson's ratio is firstly presented. In the previous research, we have studied the compression performance of honeycomb with different negative Poisson's ratio. In this study, a comparative study on the local impact resistance of different sandwich panels is conducted by considering a spherical projectile with low to medium impact speed. Some critical criteria (i.e. local indentation profile, global deflection, impact force and energy absorption) are adopted to analyze the impact resistance. Finally, an influential mechanism of Poisson's ratio on the local impact resistance of sandwich panel is studied by considering the variation of core strength and post-impact collapse behavior.


2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Jingchen Hu ◽  
Tianshu Wang

This paper studies the collision problem of a robot manipulator and presents a method to minimize the impact force by pre-impact configuration designing. First, a general dynamic model of a robot manipulator capturing a target is established by spatial operator algebra (SOA) and a simple analytical formula of the impact force is obtained. Compared with former models proposed in literatures, this model has simpler form, wider range of applications, O(n) computation complexity, and the system Jacobian matrix can be provided as a production of the configuration matrix and the joint matrix. Second, this work utilizes the impulse ellipsoid to analyze the influence of the pre-impact configuration and the impact direction on the impact force. To illustrate the inertia message of each body in the joint space, a new concept of inertia quasi-ellipsoid (IQE) is introduced. We find that the impulse ellipsoid is constituted of the inertia ellipsoids of the robot manipulator and the target, while each inertia ellipsoid is composed of a series of inertia quasi-ellipsoids. When all inertia quasi-ellipsoids exhibit maximum (minimum) coupling, the impulse ellipsoid should be the flattest (roundest). Finally, this paper provides the analytical expression of the impulse ellipsoid, and the eigenvalues and eigenvectors are used as measurements to illustrate the size and direction of the impulse ellipsoid. With this measurement, the desired pre-impact configuration and the impact direction with minimum impact force can be easily solved. The validity and efficiency of this method are verified by a PUMA robot and a spatial robot.


2011 ◽  
Vol 378-379 ◽  
pp. 370-373
Author(s):  
Yu Qing Yuan ◽  
Xuan Cang Wang ◽  
Hui Jun Shao

In order to solve the problem of aeolian sand subgrade compaction, we studied the technology of impact compaction, applied it to the engineering practice and analyzed its effect with Rayleigh wave. The technology of impact compaction can combine the compaction of potential energy and kinetic energy and make it easier for the materials to reach their elastic stage. With the combined function of "knead-roll-impact", the impact compaction road roller can compact the soil body and offer 6~10 times impact force and 3~4 times the depth of influence more than the vibratory roller. The impact compaction methods of aeolian sand subgrade were put forward. The comparative field compaction tests between impact and vibratory compaction are carried through, which are detected by Rayleigh wave. The results show that the impact compaction can make the density of the aeolian sand subgrade 2~5% higher than the vibratory compaction, and reach the influence depth of 7 metres. To sum up, the impact compaction can clearly increases the strength and stiffness of aeolian sand subgrade with a dynamic elastic modulus of 202.63MPa.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vieri Maestrini ◽  
Andrea Stefano Patrucco ◽  
Davide Luzzini ◽  
Federico Caniato ◽  
Paolo Maccarrone

PurposeGrounding on resource orchestration theory, this paper aims to study the relationship between the way buying companies use their supplier performance measurement systems and the performance improvements obtained from suppliers, with relationship trust identified as a mediator in the previous link.Design/methodology/approachThe authors design a conceptual model and test it through structural equation modelling on a final sample of 147 buyer-supplier responses, collected by means of a dyadic survey.FindingsResults suggest that the buyer company may achieve the most by balancing a diagnostic and interactive use of the measurement system, as they are both positively related to supplier performance improvement. Furthermore, relationship trust acts as a mediator in case of the interactive use, but not for the diagnostic. This type of use negatively affects relationship trust, due to its mechanistic use in the buyer-supplier relationship.Originality/valueThe authors’ results contribute to the current academic debate about supplier performance measurement system design and use by analyzing the impact of different supplier performance measurement system uses, and highlighting their relative impact on relationship trust and supplier performance improvement. From a methodological perspective, adopting a dyadic data collection process increases the robustness of the findings.


2021 ◽  
pp. 095745652110307
Author(s):  
Kangping Gao ◽  
Xinxin Xu ◽  
Ning Shi ◽  
Shengjie Jiao

In the process of drilling and coring by the rock-breaking rig, the drill rod is affected by the intermittent impact force, which reduces the efficiency of the rig to break the rock and increases the cost of the drilling and coring. Therefore, it is very important to improve the impact resistance of the drill pipe during the rock-breaking process. To achieve this goal, a flexible design of the drill pipe was carried out, and a dynamical model of the drilling rig based on a series elastic actuator was established. Considering the dynamic performance of the system, a torque feedforward link is introduced and a control model based on the force source is established. The influence of the equivalent inertia of the transmission system and the series elastic actuator damping coefficient on the system stability was analyzed by drawing the frequency domain characteristic curve of the system. By using the control and Simulink simulation software, the electromechanical simulation of the model is carried out, and the torque step tracking response of the system is obtained. A torque feedforward link is introduced to establish the control model of the system based on force source. Through dynamic simulation software ADAMS, dynamic and static impact simulation experiments were carried out on the system. The results show that when a force of 200 N is applied to the output end of the drill pipe in the tangential direction, the maximum moments received by the joint under static and dynamic environments are 34.1 N·m and 57.9 N·m, respectively. When the impact force disappears, the time required for the flexible drill pipe to reach a stable state is only 0.15 s, which verifies that the series elastic actuator–based drill pipe model can alleviate the impact of the external environment and protect the internal structure of the rig.


Sign in / Sign up

Export Citation Format

Share Document