scholarly journals Polyproline-Rich Peptides Organize Four Cholinesterase Subunits into a Tetramer; BChE and AChE Scavenge Polyproline Peptides Released during Metabolic Turnover

Proceedings ◽  
2020 ◽  
Vol 62 (1) ◽  
pp. 5
Author(s):  
Oksana Lockridge ◽  
Lawrence M. Schopfer

The genes for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) encode the proteins responsible for enzyme activity. Additional gene products, PRiMA and ColQ, anchor AChE and BChE proteins into membranes. Soluble AChE and BChE tetramers are composed of four identical subunits plus one polyproline-rich peptide. Dilution does not release the polyproline-rich peptide from tetramers. However, protein denaturation, for example, heating in a boiling water bath, dissociates the polyproline-rich peptide. Using mass spectrometry to sequence peptides released from soluble AChE and BChE tetramers, we find sequences that correspond to proline-rich regions from a variety of proteins. A typical peptide sequence contains 20 consecutive prolines in a 23-residue peptide, LPPPPPPPPPPPPPPPPPPPPLP. There is no single, common consensus sequence, i.e., no specific gene appears to be responsible for the polyproline-rich peptides found in soluble AChE and BChE tetramers. We propose that during metabolic turnover, protein fragments containing polyproline-rich sequences are scavenged by AChE and BChE dimers, to make stable AChE and BChE tetramers. The 40-residue, alpha-helical C-terminus of AChE or BChE is the tetramerization domain that binds the polyproline-rich peptide. Four parallel alpha helices wrap around a single antiparallel polyproline peptide to lock the tetramer in place. This organization was established by classical X-ray crystallography for isolated C-termini in complex with a proline-rich peptide. The organization was confirmed for intact, tetrameric human BChE using cryoelectron microscopy. When 40 amino acids are deleted from the carboxy terminus, monomeric enzymes are created that retain full enzymatic activity.

Parasitology ◽  
1994 ◽  
Vol 108 (5) ◽  
pp. 533-542 ◽  
Author(s):  
J. Khalife ◽  
R. J. Pierce ◽  
C. Godin ◽  
A. Capron

SummaryWe have previously described a rat mAb directed against a peptide derived from the vif protein of HIV-1 that recognized two Schistosoma mansoni (Sm) antigens with a major band at 65 kDa. Epitope mapping of this mAb using overlapping hexapeptides derived from the vif peptide revealed that the motif recognized was PLPSVT. The screening of a Sm cDNA library led to the identification of two clones, Sm70 and Sm65. The two deduced protein sequences did not share any common structural features apart from the epitope recognized by the mAb (see below), and did not show significant identity to sequences present in the data bases. However, the N terminus of the deduced sequence of the Sm70 protein exhibits a consensus sequence known to be an ATP/GTP binding site. Furthermore, the C terminus of the deduced Sm65 protein sequence was found to contain a conserved hexapeptide with a consensus sequence LPETGE reported to be an important motif of the surface proteins of gram-positive cocci. Both proteins exhibit a peptide sequence (PLRSVT for Sm70 and PVGSVT for Sm65) similar to the epitope recognized by the mAb anti-vif. Western blotting experiments showed that the mAb anti-vif reacted with both proteins. However, only Sm65 was recognized by sera from HIV-1- seropositive individuals, whereas both proteins were recognized by S. mansoni-infected patients.


1993 ◽  
Vol 106 (1) ◽  
pp. 31-43 ◽  
Author(s):  
X.R. Wu ◽  
T.T. Sun

Despite the fact that bladder epithelium has many interesting biological features and is a frequent site of carcinoma formation, relatively little is known about its biochemical differentiation. We have shown recently that a 47 kDa glycoprotein, uroplakin III (UPIII), in conjunction with uroplakins I (27 kDa) and II (15 kDa), forms the asymmetric unit membrane (AUM)--a highly specialized biomembrane characteristic of the apical surface of bladder epithelium. Deglycosylation and cDNA sequencing revealed that UPIII contains up to 20 kDa of N-linked sugars attached to a core protein of 28.9 kDa. The presence of an N-terminal signal peptide sequence and a single transmembrane domain located near the C terminus, plus the N-terminal location of all the potential N-glycosylation sites, points to a type I (N-exo/C-cyto) configuration. Thus the mass of the extracellular domain (20 kDa plus up to 20 kDa of sugar) of UPIII greatly exceeds that of its intracellular domain (5 kDa). Such an asymmetrical mass distribution, a feature shared by the other two major uroplakins, provides a molecular explanation as to why the luminal leaflet of AUM is almost twice as thick as the cytoplasmic one. The fact that of the three major proteins of AUM only UPIII has a significant cytoplasmic domain suggests that this molecule may play an important role in AUM-cytoskeleton interaction in terminally differentiated urothelial cells.


1993 ◽  
Vol 13 (1) ◽  
pp. 668-676
Author(s):  
V Lemarchandel ◽  
J Ghysdael ◽  
V Mignotte ◽  
C Rahuel ◽  
P H Roméo

The human glycoprotein IIB (GPIIB) gene is expressed only in megakaryocytes, and its promoter displays cell type specificity. We show that this specificity involved two cis-acting sequences. The first one, located at -55, contains a GATA binding site. Point mutations that abolish protein binding on this site decrease the activity of the GPIIB promoter but do not affect its tissue specificity. The second one, located at -40, contains an Ets consensus sequence, and we show that Ets-1 or Ets-2 protein can interact with this -40 GPIIB sequence. Point mutations that impair Ets binding decrease the activity of the GPIIB promoter to the same extent as do mutations that abolish GATA binding. A GPIIB 40-bp DNA fragment containing the GATA and Ets binding sites can confer activity to a heterologous promoter in megakaryocytic cells. This activity is independent of the GPIIB DNA fragment orientation, and mutations on each binding site result in decreased activity. Using cotransfection assays, we show that c-Ets-1 and human GATA1 can transactive the GPIIB promoter in HeLa cells and can act additively. Northern (RNA) blot analysis indicates that the ets-1 mRNA level is increased during megakaryocyte-induced differentiation of erythrocytic/megakaryocytic cell lines. Gel retardation assays show that the same GATA-Ets association is found in the human GPIIB enhancer and the rat platelet factor 4 promoter, the other two characterized regulatory regions of megakaryocyte-specific genes. These results indicate that GATA and Ets cis-acting sequences are an important determinant of megakaryocytic specific gene expression.


2017 ◽  
Vol 13 ◽  
pp. 2442-2457 ◽  
Author(s):  
Vladimir Kubyshkin ◽  
Nediljko Budisa

Fluorinated moieties are highly valuable to chemists due to the sensitive NMR detectability of the 19F nucleus. Fluorination of molecular scaffolds can also selectively influence a molecule’s polarity, conformational preferences and chemical reactivity, properties that can be exploited for various chemical applications. A powerful route for incorporating fluorine atoms in biomolecules is last-stage fluorination of peptide scaffolds. One of these methods involves esterification of the C-terminus of peptides using a diazomethane species. Here, we provide an investigation of the physicochemical consequences of peptide esterification with partially fluorinated ethyl groups. Derivatives of N-acetylproline are used to model the effects of fluorination on the lipophilicity, hydrolytic stability and on conformational properties. The conformational impact of the 2,2-difluoromethyl ester on several neutral and charged oligopeptides was also investigated. Our results demonstrate that partially fluorinated esters undergo variable hydrolysis in biologically relevant buffers. The hydrolytic stability can be tailored over a broad pH range by varying the number of fluorine atoms in the ester moiety or by introducing adjacent charges in the peptide sequence.


2004 ◽  
Vol 186 (20) ◽  
pp. 6983-6998 ◽  
Author(s):  
Aneta A. Bartosik ◽  
Krzysztof Lasocki ◽  
Jolanta Mierzejewska ◽  
Christopher M. Thomas ◽  
Grazyna Jagura-Burdzy

ABSTRACT The par genes of Pseudomonas aeruginosa have been studied to increase the understanding of their mechanism of action and role in the bacterial cell. Key properties of the ParB protein have been identified and are associated with different parts of the protein. The ParB- ParB interaction domain was mapped in vivo and in vitro to the C-terminal 56 amino acids (aa); 7 aa at the C terminus play an important role. The dimerization domain of P. aeruginosa ParB is interchangeable with the dimerization domain of KorB from plasmid RK2 (IncP1 group). The C-terminal part of ParB is also involved in ParB-ParA interactions. Purified ParB binds specifically to DNA containing a putative parS sequence based on the consensus sequence found in the chromosomes of Bacillus subtilis, Pseudomonas putida, and Streptomyces coelicolor. The overproduction of ParB was shown to inhibit the function of genes placed near parS. This “silencing” was dependent on the parS sequence and its orientation. The overproduction of P. aeruginosa ParB or its N-terminal part also causes inhibition of the growth of P. aeruginosa and P. putida but not Escherichia coli cells. Since this inhibitory determinant is located well away from ParB segments required for dimerization or interaction with the ParA counterpart, this result may suggest a role for the N terminus of P. aeruginosa ParB in interactions with host cell components.


1992 ◽  
Vol 12 (10) ◽  
pp. 4478-4485 ◽  
Author(s):  
L Li ◽  
R Heller-Harrison ◽  
M Czech ◽  
E N Olson

Differentiation of skeletal muscle cells is inhibited by the cyclic AMP (cAMP) signal transduction pathway. Here we report that the catalytic subunit of cAMP-dependent protein kinase (PKA) can substitute for cAMP and suppress muscle-specific transcription by silencing the activity of the MyoD family of regulatory factors, which includes MyoD, myogenin, myf5, and MRF4. Repression by the PKA catalytic (C) subunit is directed at the consensus sequence CANNTG, the target for DNA binding and transcriptional activation by these myogenic regulators. Phosphopeptide mapping of myogenin in vitro and in vivo revealed two PKA phosphorylation sites, both within the basic region. However, repression of myogenin function by PKA does not require direct phosphorylation of these sites but instead involves an indirect mechanism with one or more intermediate steps. Regulation of the transcriptional activity of the MyoD family by modulation of the cAMP signaling pathway may account for the inhibitory effects of certain peptide growth factors on muscle-specific gene expression and may also determine the responsiveness of different cell types to myogenic conversion by these myogenic regulators.


1990 ◽  
Vol 10 (10) ◽  
pp. 5071-5076
Author(s):  
C A Hrycyna ◽  
S Clarke

Membrane extracts of sterile Saccharomyces cerevisiae strains containing the a-specific ste14 mutation lack a farnesyl cysteine C-terminal carboxyl methyltransferase activity that is present in wild-type a and alpha cells. Other a-specific sterile strains with ste6 and ste16 mutations also have wild-type levels of the farnesyl cysteine carboxyl methyltransferase activity. This enzyme activity, detected by using a synthetic peptide sequence based on the C-terminus of a ras protein, may be responsible not only for the essential methylation of the farnesyl cysteine residue of a mating factor, but also for the methylation of yeast RAS1 and RAS2 proteins and possibly other polypeptides with similar C-terminal structures. We demonstrate that the farnesylation of the cysteine residue in the peptide is required for the methyltransferase activity, suggesting that methyl esterification follows the lipidation reaction in the cell. To show that the loss of methyltransferase activity is a direct result of the ste14 mutation, we transformed ste14 mutant cells with a plasmid complementing the mating defect of this strain and found that active enzyme was produced. Finally, we demonstrated that a similar transformation of cells possessing the wild-type STE14 gene resulted in sixfold overproduction of the enzyme. Although more complicated possibilities cannot be ruled out, these results suggest that STE14 is a candidate for the structural gene for a methyltransferase involved in the formation of isoprenylated cysteine alpha-methyl ester C-terminal structures.


1992 ◽  
Vol 12 (10) ◽  
pp. 4478-4485
Author(s):  
L Li ◽  
R Heller-Harrison ◽  
M Czech ◽  
E N Olson

Differentiation of skeletal muscle cells is inhibited by the cyclic AMP (cAMP) signal transduction pathway. Here we report that the catalytic subunit of cAMP-dependent protein kinase (PKA) can substitute for cAMP and suppress muscle-specific transcription by silencing the activity of the MyoD family of regulatory factors, which includes MyoD, myogenin, myf5, and MRF4. Repression by the PKA catalytic (C) subunit is directed at the consensus sequence CANNTG, the target for DNA binding and transcriptional activation by these myogenic regulators. Phosphopeptide mapping of myogenin in vitro and in vivo revealed two PKA phosphorylation sites, both within the basic region. However, repression of myogenin function by PKA does not require direct phosphorylation of these sites but instead involves an indirect mechanism with one or more intermediate steps. Regulation of the transcriptional activity of the MyoD family by modulation of the cAMP signaling pathway may account for the inhibitory effects of certain peptide growth factors on muscle-specific gene expression and may also determine the responsiveness of different cell types to myogenic conversion by these myogenic regulators.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1041-1048 ◽  
Author(s):  
A.J. Harwood ◽  
A. Early ◽  
J.G. Williams

The ecmA and ecmB genes of Dictyostelium encode related extracellular matrix proteins and both are induced by DIF, the stalk cell-specific morphogen. The ecmA gene is expressed throughout the prestalk region of the migrating slug but only later, at culmination, do the prestalk cells express the ecmB gene. Expression of the ecmB gene is induced at the entrance to the stalk tube and we have identified two, apparently redundant, promoter elements that control this process. They act as repressors, preventing transcription in the tip of the migrating slug and the apical papilla of the culminant. They have a semi-palindromic consensus sequence TTGnCAA, where n is in one case 2 and in the other 4 bp. Either element alone is able to repress ecmB promoter activity in prestalk cells. Introduction of a single repressor element into the promoter of the ecmA gene changes its expression pattern to resemble that of the ecmB gene. Mutant elements, where n is altered, cause repression during the slug stage but allow premature ecmB expression during culmination; suggesting that the effective strength of the inductive signal may increase during culmination. Inhibition of cAMP-dependent protein kinase (PKA) in prestalk cells blocks both stalk cell maturation and ecmB gene expression. We show that the block to gene expression correlates precisely with the presence of a functional repressor element and this is consistent with the notion that expression of the ecmB gene is controlled by a PKA-dependent release from transcriptional repression.


1996 ◽  
Vol 16 (6) ◽  
pp. 2777-2786 ◽  
Author(s):  
V Gailus-Durner ◽  
J Xie ◽  
C Chintamaneni ◽  
A K Vershon

The meiosis-specific gene HOP1, which encodes a component of the synaptonemal complex, is controlled through two regulatory elements, UASH and URS1H. Sites similar to URS1H have been identified in the promoter region of virtually every early meiosis-specific gene, as well as in many promoters of nonmeiotic genes, and it has been shown that the proteins that bind to this site function to regulate meiotic and nonmeiotic transcription. Sites similar to the UASH site have been found in a number of meiotic and nonmeiotic genes as well. Since it has been shown that UASH functions as an activator site in vegetative haploid cells, it seemed likely that the factors binding to this site regulate both meiotic and nonmeiotic transcription. We purified the factor binding to the UASH element of the HOP1 promoter. Sequence analysis identified the protein as Abf1 (autonomously replicating sequence-binding factor 1), a multifunctional protein involved in DNA replication, silencing, and transcriptional regulation. We show by mutational analysis of the UASH site, that positions outside of the proposed UASH consensus sequence (TNTGN[A/T]GT) are required for DNA binding in vitro and transcriptional activation in vivo. A new UASH consensus sequence derived from this mutational analysis closely matches a consensus Abf1 binding site. We also show that an Abf1 site from a nonmeiotic gene can replace the function of the UASH site in the HOP1 promoter. Taken together, these results show that Abf1 functions to regulate meiotic gene expression.


Sign in / Sign up

Export Citation Format

Share Document