scholarly journals A Two-stage Energy Extraction Circuit for Energy Harvesting in Non-Sinusoidal Excited Environments

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 700 ◽  
Author(s):  
Philipp Dorsch ◽  
Toni Bartsch ◽  
Florian Hubert ◽  
Heinrich Milosiu ◽  
Stefan J. Rupitsch

We present a two-stage energy extraction circuit for a piezoelectric energy harvester, powering an asset-tracking system. Exploiting non-sinusoidal accelerations generated by many logistic transport devices, e.g., pushcarts, forklifts, assembly belts or cars, we are able to harvest sufficient electrical energy to transmit radio signals, which will allow to track the object when it is moving. By using the proposed energy extraction circuit, the energy extraction efficiency could be improved by at least 30% compared to a single-stage solution for sinusoidal excitations. In the practical use-case, the two-stage energy extraction network performs more than four times better compared to the single staged on.

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1330 ◽  
Author(s):  
Philipp Dorsch ◽  
Toni Bartsch ◽  
Florian Hubert ◽  
Heinrich Milosiu ◽  
Stefan Rupitsch

We present a two-stage energy extraction circuit for a piezoelectric energy harvester, powering an asset-tracking system. Exploiting accelerations generated by many logistic transport devices, e.g., pushcarts, forklifts, assembly belts or cars, we are able to harvest sufficient electrical energy to transmit radio signals, which will allow to track an object when it is moving. Accelerations in logistic applications are non-sinusoidal and lead to high open-circuit voltages, which demand a special adaption of the energy extraction network. We evaluate the performance of several state-of-the-art energy extraction networks and compare those to the performance of our two-stage approach under various excitation conditions. By using the proposed energy extraction circuit, the transmission rate could be increased from four to six transmissions per second for sinusoidal excitations with an open-circuit-voltage of 60 V . In the practical use-case, the two-stage energy extraction network performs more than two times better compared to the one-stage and synchronized switching harvesting with inductor approach.


2014 ◽  
Vol 69 (8) ◽  
Author(s):  
Mohd Nor Fakhzan Mohd Kazim ◽  
Selvanayakan Raman ◽  
Muhammad Hafiz Shafie ◽  
Nashrul Fazli Mohd Nasir ◽  
Asan Gani Abdul Muthalif

Silicon carbide (SiC) is a material that possesses hardness and robustness to operate under high temperature condition. This work is a pilot in exploring the feasibility of cubic piezo element on the SiC wafer with integrated proof mass as horizontal cantilever with perpendicular displacement with respect to the normal plane. With the advance of electronic circuitry, the power consumption is reduced to nano-watts. Therefore, harvesting ambient energy and converting into electrical energy through piezoelectric material will be useful for powering low power devices. Resonance is a property which able to optimize the generated output power by tuning the proof masses. The damping ratio is a considerable parameter for optimization. From analytical study, small damping ratio will enhance the output power of the piezoelectric energy harvester (PEH). This paper will present mathematical modelling approach, simulation verification and the conditional circuit named versatile precision full wave rectifier.  


Author(s):  
Prateek Asthana ◽  
Gargi Khanna

Piezoelectric energy harvesting refers to conversion of mechanical energy into usable electrical energy. In the modern connected world, wireless sensor nodes are scattered around the environment. These nodes are powered by batteries. Batteries require regular replacement, hence energy harvesters providing continuous autonomous power are used to power these sensor nodes. This work provides two different fixation modes for the resonant frequency for the two modes. Variation in geometric parameter and their effect on resonant frequency and output power have been analyzed. These harvesters capture a wide-band of ambient vibrations and convert them into usable electrical energy. To capture random ambient vibrations, the harvester used is a wide-band energy harvester based on conventional seesaw mechanism. The proposed structure operates on first two resonant frequencies in comparison to the conventional cantilever system working on first resonant frequency. Resonance frequency, as well as response to a varying input vibration frequency, is carried out, showing better performance of seesaw cantilever design. In this work, modeling of wide-band energy harvester with proof mass is being performed. Position of proof mass plays a key role in determining the resonant frequency of the harvester. Placing the proof mass near or away from fixed end results in increase and decrease in stress on the piezoelectric layer. Hence, to avoid the breaking of cantilever, the position of proof mass has been analyzed.


Author(s):  
Zhengbao Yang ◽  
Jean Zu

Energy harvesting from vibrations has become, in recent years, a recurring target of a quantity of research to achieve self-powered operation of low-power electronic devices. However, most of energy harvesters developed to date, regardless of different transduction mechanisms and various structures, are designed to capture vibration energy from single predetermined direction. To overcome the problem of the unidirectional sensitivity, we proposed a novel multi-directional nonlinear energy harvester using piezoelectric materials. The harvester consists of a flexural center (one PZT plate sandwiched by two bow-shaped aluminum plates) and a pair of elastic rods. Base vibration is amplified and transferred to the flexural center by the elastic rods and then converted to electrical energy via the piezoelectric effect. A prototype was fabricated and experimentally compared with traditional cantilevered piezoelectric energy harvester. Following that, a nonlinear conditioning circuit (self-powered SSHI) was analyzed and adopted to improve the performance. Experimental results shows that the proposed energy harvester has the capability of generating power constantly when the excitation direction is changed in 360. It also exhibits a wide frequency bandwidth and a high power output which is further improved by the nonlinear circuit.


Author(s):  
Shaofan Qi ◽  
Roger Shuttleworth ◽  
S. Olutunde Oyadiji

Energy harvesting is the process of converting low level ambient energy into usable electrical energy, so that remote electronic instruments can be powered without the need for batteries or other supplies. Piezoelectric material has the ability to convert mechanical energy into electrical energy, and cantilever type harvesters using this material are being intensely investigated. The typical single cantilever energy harvester design has a limited bandwidth, and is restricted in ability for converting environmental vibration occurring over a wide range of frequencies. A multiple cantilever piezoelectric generator that works over a range of frequencies, yet has only one Piezo element, is being investigated. The design and testing of this novel harvester is described.


Author(s):  
H. Li ◽  
S. D. Hu ◽  
H. S. Tzou

Piezoelectric energy harvesting has experienced significant growth over the past few years. Various harvesting structures have been proposed to convert ambient vibration energies to electrical energy. However, these harvester’s base structures are mostly beams and some plates. Shells have great potential to harvest more energy. This study aims to evaluate a piezoelectric coupled conical shell based energy harvester system. Piezoelectric patches are laminated on the conical shell surface to convert vibration energy to electric energy. An open-circuit output voltage of the conical energy harvester is derived based on the thin-shell theory and the Donnel-Mushtari-Valsov theory. The open-circuit voltage and its derived energy consists of four components respectively resulting from the meridional and circular membrane strains, as well as the meridional and circular bending strains. Reducing the surface of the harvester to infinite small gives the spatial energy distribution on the shell surface. Then, the distributed modal energy harvesting characteristics of the proposed PVDF/conical shell harvester are evaluated in case studies. The results show that, for each mode with unit modal amplitude, the distribution depends on the mode shape, harvester location, and geometric parameters. The regions with high strain outputs yield higher modal energies. Accordingly, optimal locations for the PVDF harvester can be defined. Also, when modal amplitudes are specified, the overall energy of the conical shell harvester can be calculated.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Long Zhang ◽  
Keith A. Williams ◽  
Zhengchao Xie

The power source with the limited life span has motivated the development of the energy harvesters that can scavenge the ambient environment energy and convert it into the electrical energy. With the coupled field characteristics of structure to electricity, piezoelectric energy harvesters are under consideration as a means of converting the mechanical energy to the electrical energy, with the goal of realizing completely self-powered sensor systems. In this paper, two previous models in the literatures for predicting the open-circuit and close-circuit voltages of a piezoelectric cantilever bimorph (PCB) energy harvester are first described, that is, the mechanical equivalent spring mass-damper model and the electrical equivalent circuit model. Then, the development of an enhanced coupled field model for the PCB energy harvester based on another previous model in the literature using a conservation of energy method is presented. Further, the laboratory experiments are carried out to evaluate the enhanced coupled field model and the other two previous models in the literatures. The comparison results show that the enhanced coupled field model can better predict the open-circuit and close-circuit voltages of the PCB energy harvester with a proof mass bonded at the free end of the structure in order to increase the energy-harvesting level of the system.


2019 ◽  
Vol 136 ◽  
pp. 02017
Author(s):  
Min Liu ◽  
Hui Xia ◽  
Guoqiang Liu ◽  
Dong Xia

A finite element fluid-solid coupling model for ocean energy harvester based on piezoelectric vortex-induced vibration(VIV) is established. Given that the Karman Vortex Street is generated after the fluid passes through the vibrator. The model includes the conversion of water flow energy to VIV energy and the capture of electrical energy by piezoelectric devices. And the output voltage curve is obtained by coupling with piezoelectric beam. Based on the fluid-solid coupling calculation, the dynamic response characteristics of the oscillator under different parameters such as shape of oscillators and fluid velocity are studied. The voltage output of piezoelectric beam in cylindrical, semi-cylindrical and regular triangular oscillators is analyzed. Simulation results show that the output voltage and pressure difference are largest in regular triangular oscillator system compared with the cylindrical and semi-cylindrical system. When changing fluid velocity, it is found that the higher the velocity of the water fluid be, the higher the output voltage be. When the given fluid velocity reaches 1 m/s, the maximum output voltage of cylindrical, semi-cylindrical and regular triangular piezoelectric energy harvesters reaches 0.045V, 0.08V, and 0.085V respectively. Under the same fluid velocity, change the ratio of height and width of oscillator, and find that the higher ratio of height and width of oscillator is more suitable to harvest the energy of VIV.


Author(s):  
O. Aldraihem ◽  
A. Baz

The onset of self-excited oscillations is developed theoretically for a traveling wave thermo-acoustic-piezoelectric (TAP) energy harvester. The harvester is intended for converting thermal energy, such as solar or waste heat energy, directly into electrical energy without the need for any moving components. The thermal energy is utilized to generate a steep temperature gradient along a porous stack. At a specific threshold of the temperature gradient, self-sustained acoustic waves are generated inside an acoustic resonator. The resulting pressure fluctuations excite a piezoelectric diaphragm, placed at the end of the resonator, which converts the acoustic energy directly into electrical energy. The pressure pulsations are amplified by using an acoustic feedback loop which introduces appropriate phasing that make the pulsations take the form of traveling waves. Such traveling waves render the harvester to be inherently reversible and thus highly efficient. The behavior of this class of harvesters is modeled using the lumped-parameter approach. The developed model is a multi-field model which combines the descriptions of the acoustic resonator, feedback loop, and the stack with the characteristics of the piezoelectric diaphragm. A new method is proposed here to analyze the onset of self-sustained oscillations of the traveling wave engine using the classical control theory. The predictions of the developed models are validated against published results. Such models present invaluable tools for the design of efficient thermo-acoustic-piezoelectric (TAP) energy harvesters and engines.


Sign in / Sign up

Export Citation Format

Share Document