scholarly journals Smart Energy Management for Unlocking Demand Response in the Residential Sector

Proceedings ◽  
2018 ◽  
Vol 2 (15) ◽  
pp. 1136 ◽  
Author(s):  
Xiangping Chen ◽  
Kui Weng ◽  
Fanlin Meng ◽  
Monjur Mourshed

This paper presents a smart energy management system for unlocking demand response in the UK residential sector. The approach comprises the estimation of one-hour energy demand and PV generation (supply) for scheduling the 24-h ahead demand profiles by shifting potential flexible loads. Real-time electrical demand is met by combining power supplies from PV, grid and batteries while minimizing consumer’s cost of energy. The results show that the peak-to-average ratio is reduced by 22.9% with the cost saving of 34.6% for the selected day.

2009 ◽  
Vol 4 (3) ◽  
pp. 121-134
Author(s):  
Wayne Jensen ◽  
Tim Wentz ◽  
Bruce Fischer

The cost of energy is a significant percentage of the operating expense for most buildings. Energy used within buildings is supplied primarily by electricity. Demand for electricity used in industrial and agricultural applications is frequently leveled by shifting portions of peak loads to non-peak periods. Leveling electrical loads reduces the utility's carbon footprint and the cost of generating power. Resulting savings are commonly shared with customers through economic incentives. Similar techniques can be applied to control the energy demand of buildings, with benefits for both the electrical utility and electricity users. This paper provides an overview of electrical load-shedding techniques, outlines some of the benefits and problems associated with each, and discusses how some of these techniques are currently being applied to reduce the total electrical load for buildings. The paper also proposes a LEED credit which provides an incentive for owners and tenants to incorporate one or more load-shedding systems into LEED certified buildings to lower peak electrical demand.


2018 ◽  
Vol 30 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Paraskevas Panagiotidis ◽  
Andrew Effraimis ◽  
George A Xydis

The main aim of this work is to reduce electricity consumption for consumers with an emphasis on the residential sector in periods of increased demand. Efforts are focused on creating a methodology in order to statistically analyse energy demand data and come up with forecasting methodology/pattern that will allow end-users to organize their consumption. This research presents an evaluation of potential Demand Response programmes in Greek households, in a real-time pricing market model through the use of a forecasting methodology. Long-term Demand Side Management programs or Demand Response strategies allow end-users to control their consumption based on the bidirectional communication with the system operator, improving not only the efficiency of the system but more importantly, the residential sector-associated costs from the end-users’ side. The demand load data were analysed and categorised in order to form profiles and better understand the consumption patterns. Different methods were tested in order to come up with the optimal result. The Auto Regressive Integrated Moving Average modelling methodology was selected in order to ensure forecasts production on load demand with the maximum accuracy.


2020 ◽  
Vol 12 (14) ◽  
pp. 5561 ◽  
Author(s):  
Bhagya Nathali Silva ◽  
Murad Khan ◽  
Kijun Han

The emergence of the Internet of Things (IoT) notion pioneered the implementation of various smart environments. Smart environments intelligibly accommodate inhabitants’ requirements. With rapid resource shrinkage, energy management has recently become an essential concern for all smart environments. Energy management aims to assure ecosystem sustainability, while benefiting both consumers and utility providers. Although energy management emerged as a solution that addresses challenges that arise with increasing energy demand and resource deterioration, further evolution and expansion are hindered due to technological, economical, and social barriers. This review aggregates energy management approaches in smart environments and extensively reviews a variety of recent literature reports on peak load shaving and demand response. Significant benefits and challenges of these energy management strategies were identified through the literature survey. Finally, a critical discussion summarizing trends and opportunities is given as a thread for future research.


2019 ◽  
Vol 66 (2) ◽  
pp. 99-120
Author(s):  
Wilmer Emilio García Moreno ◽  
Andressa Ullmann Duarte ◽  
Litiéle dos Santos ◽  
Rogério Vescia Lourega

AbstractThe photovoltaic technologies have been developed year by year in different countries; however, there are some countries where this kind of energy is being born, such as the Brazilian case. In this paper, some important parameters are analysed and applied to different solar cell materials, identifying that if the fossil fuels were substituted by solar cells, it would reduce the CO2 emissions by 93.2%. In addition, it is shown that the efficiency of solar cells is not as farther as it could be thought from coal thermoelectrical plants in Brazil and the cost of energy using solar cells could be as good as these thermoelectrical plants. Finally, the potentiality of Brazilian territory to implant this technology is presented, identifying that with the use of 0.2% of the territory, the energy demand could be supplied.


Systems ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 33 ◽  
Author(s):  
Stylianos Karatzas ◽  
Athanasios Chassiakos

Inelasticity of demand along with the distributed energy sources and energy market democratization pose significant challenges which have considerable negative impacts on overall grid balance. The need for increased capacity and flexibility in the era of energy market digitalization has introduced new requirements in the energy supply network which could not be satisfied without continuous and costly local power network upgrades. Additionally, with the emergence of Smart Homes (SHs) and Home Energy Management (HEM) systems for monitoring and operating household appliances, opportunities have arisen for automated Demand Response (DR). DR is exploited for the modification of the consumer energy demand, in response to the specific conditions within the electricity system (e.g., peak period network congestion). In order to optimally integrate DR in the broader Smart Grid (SG) system, modelling of the system parameters and safety analysis is required. In this paper, the implementation of STPA (System-Theoretic Process Analysis) structured method, as a relatively new hazard analysis technique for complex systems is presented and the feasibility of STPA implementation for loss prevention on a Demand Response system for home energy management, and within the complex SG context, is examined. The applied method delivers a mechanism useful in understanding where gaps in current operational risk structures may exist. The STPA findings in terms of loss scenarios can be used to generate a variety of safeguards to ensure secure operational control and in implementing targeted strategies through standard approaches of risk assessment.


Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 37 ◽  
Author(s):  
Sajad Ghorbani ◽  
Rainer Unland ◽  
Hassan Shokouhandeh ◽  
Ryszard Kowalczyk

In microgrids a major share of the energy production comes from renewable energy sources such as photovoltaic panels or wind turbines. The intermittent nature of these types of producers along with the fluctuation in energy demand can destabilize the grid if not dealt with properly. This paper presents a multi-agent-based energy management approach for a non-isolated microgrid with solar and wind units and in the presence of demand response, considering uncertainty in generation and load. More specifically, a modified version of the lightning search algorithm, along with the weighted objective function of the current microgrid cost, based on different scenarios for the energy management of the microgrid, is proposed. The probability density functions of the solar and wind power outputs, as well as the demand of the households, have been used to determine the amount of uncertainty and to plan various scenarios. We also used a particle swarm optimization algorithm for the microgrid energy management and compared the optimization results obtained from the two algorithms. The simulation results show that uncertainty in the microgrid normally has a significant effect on the outcomes, and failure to consider it would lead to inaccurate management methods. Moreover, the results confirm the excellent performance of the proposed approach.


2020 ◽  
pp. 014459872097067
Author(s):  
Krishnam Nair ◽  
Ajal Kumar

Fiji is located in the South Western part of the Pacific between latitude 18° S and longitude 179° E. In 2018, Fiji has spent approximately FJD 800 million in importing fossil fuel to meet the rising energy demand in the country. In the previous year’s several solar PV and wind resource assessments has been done and results obtained indicated that there is a potential for grid connected electricity generation using recommended resources. This study was carried out in the Nasawana Village (16°55.3 S and 178°47.4 E) to determine the options to use electricity derived from the wind. Wind analysis was carried out using Wind Atlas Analysis and Application Program (WAsP) that predicted the wind speed of 6.96 ms−1 and a power density of 256 Wm−2 at 55 m a.g.l. The annual energy production predicted for a single wind turbine (Vergnet 275 kW) is approximately 631.6 MWh with a capacity factor of 26%. The cost of energy per kWh is estimated as FJD 0.10 with a payback period of 7 years.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1529
Author(s):  
Gabriel Nasser Doyle de Doile ◽  
Paulo Rotella Junior ◽  
Priscila França Gonzaga Carneiro ◽  
Rogério Santana Peruchi ◽  
Luiz Célio Souza Rocha ◽  
...  

Brazil is currently undergoing changes to regulations on distributed generation (DG), specifically for solar energy micro-generation. The changes proposed by the Brazilian Regulatory Agency suggest that only the cost of energy be compensated to investors. The service costs and other charges related to energy tariffs must be divided among consumers. Investors with existing installations and class entities have contested these proposals, calling them “sun-fees”. To date, no scientific papers have been published discussing these changes. The new regulations propose an end to cross subsidies, where all consumers (even those who do not have DG) pay for the transmission and distribution systems. This study compares the economic feasibility of micro-generation before and after implementing the new standards proposed by the regulatory agency. We used data on average electrical energy demand, energy price, and solar radiation in different regions. The national averages were used as a base comparison with other scenarios. The results show that projects are viable for all analyzed scenarios, however, after implementing the proposed changes, the discounted payback time is extended. This, however, does not make projects unfeasible.


2012 ◽  
Vol 1 (1) ◽  
pp. 4
Author(s):  
Pooja Rajput ◽  
Kiran Rajput ◽  
Muhammad Zakir Shaikh ◽  
B. S. Chowdhry ◽  
M. Aamir

This paper presents a framework for a home automation scenario within a Smart Grid System. The framework is designed to schedule appliances at less expensive hours to decrease the cost of energy usage at home. The important factor of comfort degradation is also addressed using proposed framework. The framework consists of a Wireless Automatic Metering System that helps in solving various issues of electricity expenses and provides the user with information such as different schemes and tariff packages. Through the proposed framework for home automation, the user will be able to control and reduce the energy expenses using an interactive GUI.


Sign in / Sign up

Export Citation Format

Share Document