scholarly journals Role of DNA Damage and Repair in Detrimental Effects of Ionizing Radiation

Radiation ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 1-4
Author(s):  
Alexandros G. Georgakilas

Ionizing radiation (IR) is considered a traditional mutagen and genotoxic agent. Exposure to IR affects in all cases biological systems and living organisms from plants to humans mostly in a pernicious way. At low (<0.1 Gy) and low-to-medium doses (0.1–1 Gy), one can find in the literature a variety of findings indicating sometimes a positive-like anti-inflammatory effect or detrimental-like toxicity. In this Special Issue and in general in the current research, we would like to acquire works and more knowledge on the role(s) of DNA damage and its repair induced by ionizing radiations as instigators of the full range of biological responses to radiation. Emphasis should be given to advances offering mechanistic insights into the ability of radiations with different qualities to severely impact cells or tissues. High-quality research or review studies on different species projected to humans are welcome. Technical advances reporting on the methodologies to accurately measure DNA or other types of biological damage must be highly considered for the near future in our research community, as well. Last but not least, clinical trials or protocols with improvements to radiation therapy and radiation protection are also included in our vision for the advancement of research regarding biological effects of IR.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1966
Author(s):  
Rabin Dhakal ◽  
Mohammad Yosofvand ◽  
Mahsa Yavari ◽  
Ramzi Abdulrahman ◽  
Ryan Schurr ◽  
...  

Knowledge regarding complex radiation responses in biological systems can be enhanced using genetically amenable model organisms. In this manuscript, we reviewed the use of the nematode, Caenorhabditis elegans (C. elegans), as a model organism to investigate radiation’s biological effects. Diverse types of experiments were conducted on C. elegans, using acute and chronic exposure to different ionizing radiation types, and to assess various biological responses. These responses differed based on the type and dose of radiation and the chemical substances in which the worms were grown or maintained. A few studies compared responses to various radiation types and doses as well as other environmental exposures. Therefore, this paper focused on the effect of irradiation on C. elegans, based on the intensity of the radiation dose and the length of exposure and ways to decrease the effects of ionizing radiation. Moreover, we discussed several studies showing that dietary components such as vitamin A, polyunsaturated fatty acids, and polyphenol-rich food source may promote the resistance of C. elegans to ionizing radiation and increase their life span after irradiation.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mathias S. Weyland ◽  
Pauline Thumser-Henner ◽  
Katarzyna J. Nytko ◽  
Carla Rohrer Bley ◽  
Simone Ulzega ◽  
...  

In this work, a method is established to calibrate a model that describes the basic dynamics of DNA damage and repair. The model can be used to extend planning for radiotherapy and hyperthermia in order to include the biological effects. In contrast to “syntactic” models (e.g., describing molecular kinetics), the model used here describes radiobiological semantics, resulting in a more powerful model but also in a far more challenging calibration. Model calibration is attempted from clonogenic assay data (doses of 0–6 Gy) and from time-resolved comet assay data obtained within 6 h after irradiation with 6 Gy. It is demonstrated that either of those two sources of information alone is insufficient for successful model calibration, and that both sources of information combined in a holistic approach are necessary to find viable model parameters. Approximate Bayesian computation (ABC) with simulated annealing is used for parameter search, revealing two aspects that are beneficial to resolving the calibration problem: (1) assessing posterior parameter distributions instead of point-estimates and (2) combining calibration runs from different assays by joining posterior distributions instead of running a single calibration run with a combined, computationally very expensive objective function.


2018 ◽  
Vol 53 (4) ◽  
pp. 241-248 ◽  
Author(s):  
J.-L. Ravanat

During the last few decades, a considerable amount of work has been done to better assess the effects of ionizing radiation on living organisms. In particular a lot of attention has been focused on the consequences of modifications of the DNA macromolecule, the support of the genetic information. Detailed information is now available on the formation of radiation-induced DNA lesions at the physical, chemical and biological levels. Emphasis will be placed in this review article on the differences and similarities, in term of DNA lesions formation and outcome, between endogenous oxidative stress and ionizing radiation, both stresses that could produce oxidative DNA lesions through similar mechanistic pathways involving mostly reactive oxygen species. If the chemical nature of the generated lesions is similar, the differences in term of biological consequences could be attributed to their spatial distribution in genomic DNA, since ionizing radiations produce lesions in cluster. These clusters of lesions represent a challenge for the DNA repair machinery. In contrast, endogenous oxidative stress generates scattered lesions that could be repaired with a much higher efficacy and fidelity. Possible implication of the use of DNA damage and repair for human health purposes and radiological protection will be discussed.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49364 ◽  
Author(s):  
Declan J. McKenna ◽  
Bernadette A. Doherty ◽  
C. Stephen Downes ◽  
Stephanie R. McKeown ◽  
Valerie J. McKelvey-Martin

Sign in / Sign up

Export Citation Format

Share Document