scholarly journals Analysis of the German Industry to Determine the Resource Potential of CO2 Emissions for PtX Applications in 2017 and 2050

Resources ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 149
Author(s):  
Tjerk Zitscher ◽  
Ulf Neuling ◽  
Antoine Habersetzer ◽  
Martin Kaltschmitt

The production and use of crude oil-based materials, e.g., fossil fuels and bulk chemicals of organic origin, results in an increasing level of CO2 emissions within the atmosphere. One way to reduce such CO2 emissions is to substitute them with synthetic fuels and bulk chemicals. For the production of such CO2 neutral materials, CO2 from various sources can serve as a carbon source. Against this background, this paper analyses and quantifies CO2 emissions released from German industry branches today (2017) and potentially in the future (2050) after a complete defossilization has been achieved. Thus, for the classification of CO2 emissions from the respective industries in 2050, alternative techniques and manufacturing processes are analyzed that might lead to a reduction in energy- and process-related CO2 emissions. Additionally, the individual production sites of the analyzed industries are determined at postcode level and a CO2 potential on NUTS3 level has been developed. Based on this, two scenarios for future CO2 emissions are developed. This shows that, in 2017, the analyzed German industrial sectors emitted almost 143 Mt CO2. By 2050, the overall emissions can be decreased by about 77 Mt to 117 Mt CO2 depending on the implementation level of alternative technologies.

2010 ◽  
Vol 3 (2) ◽  
pp. 156-180 ◽  
Author(s):  
Renáta Gregová ◽  
Lívia Körtvélyessy ◽  
Július Zimmermann

Universals Archive (Universal #1926) indicates a universal tendency for sound symbolism in reference to the expression of diminutives and augmentatives. The research ( Štekauer et al. 2009 ) carried out on European languages has not proved the tendency at all. Therefore, our research was extended to cover three language families – Indo-European, Niger-Congo and Austronesian. A three-step analysis examining different aspects of phonetic symbolism was carried out on a core vocabulary of 35 lexical items. A research sample was selected out of 60 languages. The evaluative markers were analyzed according to both phonetic classification of vowels and consonants and Ultan's and Niewenhuis' conclusions on the dominance of palatal and post-alveolar consonants in diminutive markers. Finally, the data obtained in our sample languages was evaluated by means of a three-dimensional model illustrating the place of articulation of the individual segments.


2020 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Julien Chevallier

In the Dynamic Conditional Correlation with Mixed Data Sampling (DCC-MIDAS) framework, we scrutinize the correlations between the macro-financial environment and CO2 emissions in the aftermath of the COVID-19 diffusion. The main original idea is that the economy’s lock-down will alleviate part of the greenhouse gases’ burden that human activity induces on the environment. We capture the time-varying correlations between U.S. COVID-19 confirmed cases, deaths, and recovered cases that were recorded by the Johns Hopkins Coronavirus Center, on the one hand; U.S. Total Industrial Production Index and Total Fossil Fuels CO2 emissions from the U.S. Energy Information Administration on the other hand. High-frequency data for U.S. stock markets are included with five-minute realized volatility from the Oxford-Man Institute of Quantitative Finance. The DCC-MIDAS approach indicates that COVID-19 confirmed cases and deaths negatively influence the macro-financial variables and CO2 emissions. We quantify the time-varying correlations of CO2 emissions with either COVID-19 confirmed cases or COVID-19 deaths to sharply decrease by −15% to −30%. The main takeaway is that we track correlations and reveal a recessionary outlook against the background of the pandemic.


Author(s):  
Shuzhuang Sun ◽  
Hongman Sun ◽  
Paul T Williams ◽  
Chunfei Wu

CO2 is one of the most important greenhouse gases leading to severe environmental issues. The increase of CO2 emissions from the consumption of fossil fuels has received much research attention....


2018 ◽  
Vol 882 ◽  
pp. 215-220
Author(s):  
Matthias Koppmann ◽  
Raphael Lechner ◽  
Tom Goßner ◽  
Markus Brautsch

Process cooling and air conditioning are becoming increasingly important in the industry. Refrigeration is still mostly accomplished with compression chillers, although alternative technologies are available on the market that can be more efficient for specific applications. Within the scope of the project “EffiCool” a technology toolbox is currently being developed, which is intended to assist industrials users in selecting energy efficient and eco-friendly cooling solutions. In order to assess different refrigeration options a consistent methodology was developed. The refrigeration technologies are assessed regarding their efficiency, CO2-emissions and primary energy consumption. For CCHP systems an exergetic allocation method was implemented. Two scenarios with A) a compression chiller and B) an absorption chiller coupled to a natural gas CHP system were calculated exemplarily, showing a greater overall efficiency for the CCHP system, although the individual COP of the chiller is considerably lower.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 500
Author(s):  
Juan Antonio Cecilia ◽  
Daniel Ballesteros Plata ◽  
Enrique Vilarrasa García

After the industrial revolution, the increase in the world population and the consumption of fossil fuels has led to an increase in anthropogenic CO2 emissions [...]


2004 ◽  
Vol 34 (1) ◽  
pp. 37-52
Author(s):  
Wiktor Jassem ◽  
Waldemar Grygiel

The mid-frequencies and bandwidths of formants 1–5 were measured at targets, at plus 0.01 s and at minus 0.01 s off the targets of vowels in a 100-word list read by five male and five female speakers, for a total of 3390 10-variable spectrum specifications. Each of the six Polish vowel phonemes was represented approximately the same number of times. The 3390* 10 original-data matrix was processed by probabilistic neural networks to produce a classification of the spectra with respect to (a) vowel phoneme, (b) identity of the speaker, and (c) speaker gender. For (a) and (b), networks with added input information from another independent variable were also used, as well as matrices of the numerical data appropriately normalized. Mean scores for classification with respect to phonemes in a multi-speaker design in the testing sets were around 95%, and mean speaker-dependent scores for the phonemes varied between 86% and 100%, with two speakers scoring 100% correct. The individual voices were identified between 95% and 96% of the time, and classifications of the spectra for speaker gender were practically 100% correct.


1985 ◽  
Vol 51 (1) ◽  
pp. 59-74 ◽  
Author(s):  
Niall Sharples

This paper is an exploration of the chronological development of a series of elaborate and architecturally distinctive chambered tombs on the Islands of Orkney. It begins with a short critique of the present views of the Orcadian Neolithic and highlights a failure to understand chronological developments as the most significant problem. Thus after a brief classification of the monuments there is a detailed discussion of the chronological evidence which consciously avoids typological assumptions. This is followed by an examination of the various uses the tombs were put to and involves an assessment of the location and architectural visibility of the monuments and the remains found in the chamber. When combined with the chronological evidence a series of changes in monument size, type, location and use can be hypothesized for the neolithic period. This culminates in a shift away from burial monuments to physically defined spaces, presumably used for ceremonial purposes. These changes can be interpreted as deliberate manipulation by groups within that society to change the ideological concepts which defined the role of the individual in relation to the other members of the society.


Author(s):  
Savita Rani

The National Pollutant Release Inventory (NPRI) is a public-domain record of chemicals released into air, water and land by Canadian facilities from various industrial sectors. The aim of this study was to use historical NPRI data (2002-10) to build national and provincial profiles showing amount, identity and health-hazard classification of chemicals released by facilities in different sectors. Nationally, it was found that 97% of total chemical releases were released into air, and that the top 3 chemical-emitting sectors – Manufacturing (MAN), Mining (MIN) and Utilities (U) – accounted for 98% of these air emissions. Statistical analysis was used to compare provincial chemical releases in the above 3 sectors. Testing showed that significant variation exists in the activity level of the national top 3 sectors within each province. This is reflected in the finding that provincial top 3 sectors do not necessarily match the national profile. Next, health-hazard classifications were determined for the 10 highest-emitted chemicals in the provincial and national top 3 sectors. In the national profile, MAN was classified as carcinogenic, neurotoxic, respiratory-toxic; MIN as reproductive-toxic, respiratory-toxic; U as respiratory-toxic. Sector-hazard relationships in the provinces differed from the national trends and from each other. Ultimately, associating sectors with particular hazards may help link the nature of regional health outcomes to the hazard type of local industrial facilities. A next step would be to account for differing toxicity levels among chemicals of the same hazard type by normalizing the data with risk scores that take into account a chemical’s specific toxicity.


Sign in / Sign up

Export Citation Format

Share Document