scholarly journals A Deep Learning Integrated Lee–Carter Model

Risks ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 33 ◽  
Author(s):  
Andrea Nigri ◽  
Susanna Levantesi ◽  
Mario Marino ◽  
Salvatore Scognamiglio ◽  
Francesca Perla

In the field of mortality, the Lee–Carter based approach can be considered the milestone to forecast mortality rates among stochastic models. We could define a “Lee–Carter model family” that embraces all developments of this model, including its first formulation (1992) that remains the benchmark for comparing the performance of future models. In the Lee–Carter model, the κ t parameter, describing the mortality trend over time, plays an important role about the future mortality behavior. The traditional ARIMA process usually used to model κ t shows evident limitations to describe the future mortality shape. Concerning forecasting phase, academics should approach a more plausible way in order to think a nonlinear shape of the projected mortality rates. Therefore, we propose an alternative approach the ARIMA processes based on a deep learning technique. More precisely, in order to catch the pattern of κ t series over time more accurately, we apply a Recurrent Neural Network with a Long Short-Term Memory architecture and integrate the Lee–Carter model to improve its predictive capacity. The proposed approach provides significant performance in terms of predictive accuracy and also allow for avoiding the time-chunks’ a priori selection. Indeed, it is a common practice among academics to delete the time in which the noise is overflowing or the data quality is insufficient. The strength of the Long Short-Term Memory network lies in its ability to treat this noise and adequately reproduce it into the forecasted trend, due to its own architecture enabling to take into account significant long-term patterns.

2021 ◽  
Vol 11 (1) ◽  
pp. 61-67
Author(s):  
Watthana Pongsena ◽  
◽  
Prakaidoy Sitsayabut ◽  
Nittaya Kerdprasop ◽  
Kittisak Kerdprasop ◽  
...  

Forex is the largest global financial market in the world. Traditionally, fundamental and technical analysis are strategies that the Forex traders often used. Nowadays, advanced computational technology, Artificial Intelligence (AI) has played a significant role in the financial domain. Various applications based on AI technologies particularly machine learning and deep learning have been constantly developed. As the historical data of the Forex are time-series data where the values from the past affect the values that will appear in the future. Several existing works from other domains of applications have proved that the Long-Short Term Memory (LSTM), which is a particular kind of deep learning that can be applied to modeling time series, provides better performance than traditional machine learning algorithms. In this paper, we aim to develop a powerful predictive model targeting to predicts the daily price changes of the currency pairwise in the Forex market using LSTM. Besides, we also conduct an extensive experiment with the intention to demonstrate the effect of various factors contributing to the performance of the model. The experimental results show that the optimized LSTM model accurately predicts the direction of the future price up to 61.25 percent.


Author(s):  
Claire Brenner ◽  
Jonathan Frame ◽  
Grey Nearing ◽  
Karsten Schulz

ZusammenfassungDie Verdunstung ist ein entscheidender Prozess im globalen Wasser‑, Energie- sowie Kohlenstoffkreislauf. Daten zur räumlich-zeitlichen Dynamik der Verdunstung sind daher von großer Bedeutung für Klimamodellierungen, zur Abschätzung der Auswirkungen der Klimakrise sowie nicht zuletzt für die Landwirtschaft.In dieser Arbeit wenden wir zwei Machine- und Deep Learning-Methoden für die Vorhersage der Verdunstung mit täglicher und halbstündlicher Auflösung für Standorte des FLUXNET-Datensatzes an. Das Long Short-Term Memory Netzwerk ist ein rekurrentes neuronales Netzwerk, welchen explizit Speichereffekte berücksichtigt und Zeitreihen der Eingangsgrößen analysiert (entsprechend physikalisch-basierten Wasserbilanzmodellen). Dem gegenüber gestellt werden Modellierungen mit XGBoost, einer Entscheidungsbaum-Methode, die in diesem Fall nur Informationen für den zu bestimmenden Zeitschritt erhält (entsprechend physikalisch-basierten Energiebilanzmodellen). Durch diesen Vergleich der beiden Modellansätze soll untersucht werden, inwieweit sich durch die Berücksichtigung von Speichereffekten Vorteile für die Modellierung ergeben.Die Analysen zeigen, dass beide Modellansätze gute Ergebnisse erzielen und im Vergleich zu einem ausgewerteten Referenzdatensatz eine höhere Modellgüte aufweisen. Vergleicht man beide Modelle, weist das LSTM im Mittel über alle 153 untersuchten Standorte eine bessere Übereinstimmung mit den Beobachtungen auf. Allerdings zeigt sich eine Abhängigkeit der Güte der Verdunstungsvorhersage von der Vegetationsklasse des Standorts; vor allem wärmere, trockene Standorte mit kurzer Vegetation werden durch das LSTM besser repräsentiert, wohingegen beispielsweise in Feuchtgebieten XGBoost eine bessere Übereinstimmung mit den Beobachtung liefert. Die Relevanz von Speichereffekten scheint daher zwischen Ökosystemen und Standorten zu variieren.Die präsentierten Ergebnisse unterstreichen das Potenzial von Methoden der künstlichen Intelligenz für die Beschreibung der Verdunstung.


2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


2021 ◽  
Vol 366 (1) ◽  
Author(s):  
Zhichao Wen ◽  
Shuhui Li ◽  
Lihua Li ◽  
Bowen Wu ◽  
Jianqiang Fu

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3517 ◽  
Author(s):  
Anh Ngoc-Lan Huynh ◽  
Ravinesh C. Deo ◽  
Duc-Anh An-Vo ◽  
Mumtaz Ali ◽  
Nawin Raj ◽  
...  

This paper aims to develop the long short-term memory (LSTM) network modelling strategy based on deep learning principles, tailored for the very short-term, near-real-time global solar radiation (GSR) forecasting. To build the prescribed LSTM model, the partial autocorrelation function is applied to the high resolution, 1 min scaled solar radiation dataset that generates statistically significant lagged predictor variables describing the antecedent behaviour of GSR. The LSTM algorithm is adopted to capture the short- and the long-term dependencies within the GSR data series patterns to accurately predict the future GSR at 1, 5, 10, 15, and 30 min forecasting horizons. This objective model is benchmarked at a solar energy resource rich study site (Bac-Ninh, Vietnam) against the competing counterpart methods employing other deep learning, a statistical model, a single hidden layer and a machine learning-based model. The LSTM model generates satisfactory predictions at multiple-time step horizons, achieving a correlation coefficient exceeding 0.90, outperforming all of the counterparts. In accordance with robust statistical metrics and visual analysis of all tested data, the study ascertains the practicality of the proposed LSTM approach to generate reliable GSR forecasts. The Diebold–Mariano statistic test also shows LSTM outperforms the counterparts in most cases. The study confirms the practical utility of LSTM in renewable energy studies, and broadly in energy-monitoring devices tailored for other energy variables (e.g., hydro and wind energy).


Sign in / Sign up

Export Citation Format

Share Document