scholarly journals Height of Successional Vegetation Indicates Moment of Agricultural Land Abandonment

2018 ◽  
Vol 10 (10) ◽  
pp. 1568 ◽  
Author(s):  
Natalia Kolecka

One of the major land use and land cover changes in Europe is agricultural land abandonment (ALA) that particularly affects marginal mountain areas. Accurate mapping of ALA patterns and timing is important for understanding its determinants and the environmental and socio-economic consequences. In highly fragmented agricultural landscapes with small-scale farming, subtle land use changes following ALA can be detected with high resolution remotely sensed data, and successional vegetation height is a possible indicator of ALA timing. The main aim of this study was to determine the relationship between successional vegetation height and the timing of agricultural land abandonment in the Budzów community in the Polish Carpathians. Areas of vegetation succession were vectorized on 1977, 1997, and 2009 orthophotomaps, enabling the distinguishing of vegetation encroaching on abandoned fields before and after 1997. Vegetation height in 2012–2014 was determined from digital surface and terrain models that were derived from airborne laser scanning data. The median heights of successional vegetation that started development before and after 1997 were different (6.9 m and 3.2 m, respectively). No significant correlations between successional vegetation height and elevation, slope, aspect, and proximity to forest were found. Thus, the timing of agricultural land abandonment is the most important factor influencing vegetation height, whereas environmental characteristics on this scale of investigation may be neglected.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vít Zelinka ◽  
Johana Zacharová ◽  
Jan Skaloš

AbstractThe term Sudetenland refers to large regions of the former Czechoslovakia that had been dominated by Germans. German population was expelled directly after the Second World War, between 1945 and 1947. Almost three million people left large areas in less than two years. This population change led to a break in the relationship between the people and the landscape. The aim of the study is to compare the trajectories of these changes in agricultural landscapes in lower and higher altitudes, both in depopulated areas and areas with preserved populations. This study included ten sites in the region of Northern Bohemia in Czechia (18,000 ha in total). Five of these sites represent depopulated areas, and the other five areas where populations remained preserved. Changes in the landscape were assessed through a bi-temporal analysis of land use change by using aerial photograph data from time hoirzons of 2018 and 1953. Land use changes from the 1950s to the present are corroborated in the studied depopulated and preserved areas mainly by the trajectory of agricultural land to forest. The results prove that both population displacement and landscape type are important factors that affect landscape changes, especially in agricultural landscapes.


2020 ◽  
Vol 12 (3) ◽  
pp. 339-348
Author(s):  
Vladimir TATARINTSEV ◽  
◽  
Leonid TATARINTSEV ◽  
Alex MATSYURA ◽  
Andrei BONDAROVICH ◽  
...  

The aim of the work was the landscape analysis of agricultural geographical landscapes in the Altai Territory and elaboration of measures aimed at the rational use of agricultural lands. Environmental and landscape (landscape) approach became the main method of scientific research used in the analysis of modern agricultural landscapes. The cartographic method, using GIS-technologies, made it possible to digitize the obtained materials. Synthesized maps of agro-ecological, natural and other zoning of territories are based on topographic, soil, geobotanical and other thematic maps made during land surveying during the field survey. Retrospective analysis, induction and deduction methods,analysis and synthesis, as well as the abstract-logic method were also used in the work. Our main result was the analysis of land use territory for agricultural enterprise in municipal district of Altai Krai. Exploration of lands indicates a pronounced plant-growing specialization of JSC “Pobeda” with a developed animal breeding direction. Limiting factors affecting the rational use of land are natural and climatic conditions, terrain,unsystematic anthropogenic activity and, as a result, the development of erosion processes. The degree of eroded and deflated arable land is more than 50%, hay and pasture lands are also very unstable. Landscapes have been typified, based on which eleven types of land have been identified and their geomorphological description has been carried out. The first five types of land can be used for agricultural production with limitations compensated by crop technology and erosion control measures, the sixth and seventh types require grassing and, in some cases,conservation, the eighth and ninth types can be partially used for pasture and area valorization; the remaining two are not suitable for agricultural use but should be potentially used for planting and forest management. As a result of the presented transformation of agricultural lands, the structure of cultivated areas has changed. The area of arable land decreased by 877 ha, and of pastures by 365 ha,while the area under hayfields, fallow lands, and forest lands increased by 295, 191, and 875 ha respectively. Low-productive lands were withdrawn from agriculture. We suggested that the sustainability of agricultural land use was mainly caused by the reduction of anthropogenic load and increase in ecological equilibrium of the territory.


2021 ◽  
Vol 13 (3) ◽  
pp. 1107
Author(s):  
Martina Slámová ◽  
Juraj Hreško ◽  
František Petrovič ◽  
Henrich Grežo

Water meadows or flooded meadows are known from many European countries. A historical irrigation system—catchworks—was identified in only one locality in Slovakia. This article brings a methodical approach to the identification of catchworks on mountain slopes. The main aim was to delineate catchworks using terrain and land use geospatial data intended to supplement existing data on catchworks from the field survey. The identification of shallow and narrow channels in the field is difficult, and their detection in a digital terrain model (DTM) and orthomosaic photos is also challenging. A detailed DTM elaborated from laser scanning data was not available. Therefore, we employed break lines of a Triangulated Irregular Network (TIN) model created by EUROSENSE Ltd. 2017, Bratislava, Slovakia. to determine microtopographic features on mountain slopes. Orthomosaics with adjusted red (R) green (G) and blue (B) band thresholds (digital numbers) in a time sequence of 16 years (2002–2018) and the Normalized Green-Red Difference Index (NGRDI) (2018) determined vital herbaceous vegetation and higher biomass. In both cases, the vegetation inside wet functional catchworks was differently coloured from the surroundings. In the case of dry catchworks, the identification relied only on microtopography features. The length of catchworks mapped in the field (1939.12 m; 2013) was supplied with potential catchworks detected from geospatial data (2877.18; 2018) and their total length in the study area increased above 59.74% (4816.30 m). Real and potential catchworks predominantly occupied historical grassland (meadows and pastures) (1952–1957) (4430.31; 91.99%). This result corresponds with the findings of foreign studies referring that catchworks on mountain slopes were related to livestock activities. They are important elements of sustainable land use with a water retention function in traditional agricultural landscapes.


2019 ◽  
Vol 11 (17) ◽  
pp. 4663
Author(s):  
Habibullah Rajpar ◽  
Anlu Zhang ◽  
Amar Razzaq ◽  
Khalid Mehmood ◽  
Maula Bux Pirzado ◽  
...  

Agriculture is the mainstay of Pakistan’s economy. However, it has been noticed that farmers are increasingly giving up agriculture in favor of non-agricultural activities. This study was conducted in the Khairpur district of Sindh province, which is part of the Indus Plains in Pakistan. The main purpose of the study was to investigate the current and future land use change (LUC) trends and to study farmers’ perceptions of the causes and consequences of LUC and agricultural land abandonment (ALA) in the study area. The study used field survey data and secondary data obtained from the government sources. The results show that agricultural land in the region has decreased by about 9% in the past two decades. Survey data analysis confirms this because more than 80% of farmers believe that agricultural land in the area has declined over time. In addition, farmers believe that socioeconomic and environmental changes are the main reasons for LUC and ALA. We used a logistic regression model to determine the factors that influence farmers’ decisions to sell agricultural land for other uses. The results show that the age, income, land ownership, farm inheritance by successors, social networks and lack of basic facilities in the study area are the main determinants of farmers’ decisions to sell agricultural lands. In particular, farmers’ integration into the social network and their belief that the farm will be inherited by heirs reduces the possibility of selling land. As for the consequences of LUC and ALA, the results indicate that farmland prices, weeds infestation, urban diffusion, and pressure on existing infrastructure have increased in the study area. In addition, the results show that the prospects of farming in the area remain grim as most farmers indicated that they were willing to abandon agricultural lands in favor of other revenue generation activities. The study suggests that policymakers should pay close attention to controlling rapid LUC and ALA to keep lands green.


2021 ◽  
pp. 8-8
Author(s):  
I. Kupriyanchyk ◽  

The article is devoted to the formation of the institutional environment of ecologically safe agricultural land use through the model of harmonization of ecological and economic interests of the subjects of agricultural land use. The structure of agricultural land use is based on criteria, the content of which represents both economic and environmental interests of society. For example, the landowner (land user) is interested in converting his land into the most economically attractive - arable land, which reflects his private economic interests, and on the other - society is interested in maintaining the optimal state of agricultural landscapes, which in turn provides the optimal ratio of destabilizing, stabilizing and stabilizing reflecting the public environmental interests [7]. Usually such differentiation of interests of subjects of agrarian land use causes situations of impossibility to agree them voluntarily. Therefore, there is an urgent problem in effective regulatory policy in the field of land use, in particular through the formation of the institutional environment of environmentally friendly agricultural land use through the model of harmonization of environmental and economic interests of agricultural land users. In the article, it is clarified that the institutional model of harmonization of ecological and economic interests of subjects of agrarian land use provides for the introduction of tools to eliminate the conflict of ecological and economic interests, which includes a number of tools, levers and techniques, in particular: -adaptation paradigm; formation of ecological consciousness of land users, ecological morality and ethics; development of the organizational and economic mechanism of formation of ecologically safe agrarian land tenures and land uses optimum through a combination of market and state levers of influence; regulatory and legal support of ecological safety of agricultural land use; optimization of the organizational structure of land use management. Keywords. Institutional environment, institutions, ecologically safe agricultural land use, land relations, economic development, ecology.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1193
Author(s):  
Carmen Schwartz ◽  
Mostafa Shaaban ◽  
Sonoko Dorothea Bellingrath-Kimura ◽  
Annette Piorr

Agricultural land use systems have been optimized for producing provisioning ecosystem services (ES) in the past few decades, often at the expense of regulating and cultural services. Research has focused mainly on the supply side of ES and related trade-offs, but the demand side for regulatory services remains largely neglected. The objective of this paper is to evaluate the usefulness of participatory geographic information system (PGIS) methods for demand assessment in larger rural and agrarian contexts by identifying spatially explicit demand patterns for ES, thereby enlarging the body of participatory approaches to ES-based land use management. Accordingly, we map, assess, and statistically and spatially analyze different demands for five ES by different stakeholder groups in agricultural landscapes in three case studies. The results are presented in a stakeholder workshop and prerequisites for collaborative ES management are discussed. Our results show that poor correlation exists between stakeholder groups and demands for ES; however, arable land constitutes the highest share of the mapped area of demands for the five ES. These results have been validated by both the survey and the stakeholder workshop. Our study concludes that PGIS represents a useful tool to link demand assessments and landscape management systematically, especially for decision support systems.


2016 ◽  
Author(s):  
Awoke D. Teshager ◽  
Philip W. Gassman ◽  
Justin T. Schoof ◽  
Silvia Secchi

Abstract. Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental, and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the Soil and Water Assessment Tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere-ocean general circulation models (AOGCMs). These scenarios were implemented in a well calibrated SWAT model for the Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early-century, mid-century, and late-century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid and late 21st century.


2020 ◽  
Author(s):  
Xueqing Yang ◽  
Yang Liu ◽  
Daniela Thrän ◽  
Alberto Bezama ◽  
Mei Wang

Abstract Background: The German energy transition strategy calls for a reform of the German energy sector. As a result, the Germany Renewable Energy Sources Act (EEG) was passed in 2000 and is widely regarded as successful legislation for promoting bioenergy development. More than 1,000 biogas plants were constructed in Central Germany (CG) between 2000 and 2014. Despite this, few studies have been conducted for this period that systematically investigate how environmental, social and economic factors, as well as various EEG amendments have impacted biogas production and what the environmental consequence of biogas production development in CG have been. Methods: The impacts of environmental, social and economic factors and different EEG amendments on biogas production decisions in CG were quantified using multivariate linear regression model and the event study econometric technique. A GIS-based spatial analysis was also conducted to provide insight into the changes to agricultural land use that resulted from the development of biogas plants during the EEG period. Results: The main finding was that the income diversification effect resulting from biogas production was the most important factor in a farmer’s decision to adopt biogas production. In addition, all of the EEG amendments had a significant influence on the adoption of biogas production, however EEG III and IV, which tried to promote small-scale plants, were unable to reduce the average size of the plants constructed in these two amendment periods. From a landscape perspective, there was a striking increase in the cultivation of silage maize in CG from 2000 to 2014. Silage maize was intensively cultivated in regions with a high installed biogas plant capacity. Since the first EEG amendment, permanent grassland area slightly increased while arable land area declined in CG. Conclusions: The adoption of biogas production in CG was strongly driven by economic incentives for the farmers, more precisely, by the incentive to diversify their income sources. In addition to increase the subsidy, future EEG amendments should find new measures to encourage the adoption of small-scale biogas plants, which had been unsuccessful in EEG amendments III and IV.


Land ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 316 ◽  
Author(s):  
Robert Pazúr ◽  
Juraj Lieskovský ◽  
Matthias Bürgi ◽  
Daniel Müller ◽  
Tibor Lieskovský ◽  
...  

Central and Eastern Europe has experienced fundamental land use changes since the collapse of socialism around 1990. We analyzed the patterns and determinants of agricultural land abandonment and recultivation in Slovakia during the transition from a state-controlled economy to an open-market economy (1986 to 2000) and the subsequent accession to the European Union (2000 to 2010). We quantified agricultural land-use change based on available maps derived from 30-m multi-seasonal Landsat imagery and analyzed the socioeconomic and biophysical determinants of the observed agricultural land-use changes using boosted regression trees. We used a scenario-based approach to assess future agricultural land abandonment and recultivation until 2060. The maps of agricultural land use analysis reveal that cropland abandonment was the dominant land use process on 11% of agricultural land from 1986 to 2000, and on 6% of the agricultural land from 2000 to 2010. Recultivation occurred on approximately 2% of agricultural land in both periods. Although most abandoned land was located in the plains, the rate of abandonment was twice as high in the mountainous landscapes. The likelihood of abandonment increased with increased distance from the national capital (Bratislava), decreased with an increase of annual mean temperatures and was higher in proximity to forest edges and on steeper slopes. Recultivation was largely determined by the opposite effects. The scenario for 2060 suggests that future agricultural land abandonment and recultivation may largely be determined by climate and terrain conditions and, to a lesser extent, by proximity to economic centers. Our study underscores the value of synergetic use of satellite data and land-use modeling to provide the input for land planning, and to anticipate the potential effects of changing environmental and policy conditions.


2020 ◽  
Vol 10 (10) ◽  
pp. 3500 ◽  
Author(s):  
Wojciech Zgłobicki ◽  
Kamil Karczmarczuk ◽  
Bogusława Baran-Zgłobicka

Agricultural land is an important natural resource and forms the basis for food production. Global and local socio-economic and environmental changes are often the driving forces of changes in land cover and land use. Land abandonment in rural areas is one of the processes observed in Europe today and usually leads to increased afforestation. The intensity of this process in Central Europe is linked to the political and economic changes that took place at the end of the 20th century. The study objective was to identify the natural and socio-economic factors of this process in Lublin Province—a major region of agricultural production in Poland. From 1990 to 2018, over 130,000 ha were excluded from agricultural use, which represents 7% of the arable land in 1990. Land abandonment showed considerable spatial differences when comparing different counties: its magnitude ranged from 4% to 13% of the county area. At the same time, due to the specific type of land use in the province (small farm holdings divided into several fields), the intensity of land abandonment was underestimated when based on overview data (CORINE). It was observed that the intensity of this process was correlated with the natural conditions (topography, soils) for agricultural production and the socio-economic characteristics (area of arable land, forest cover changes, farm size) of the counties as well as the absorption of Common Agricultural Policy funds.


Sign in / Sign up

Export Citation Format

Share Document