scholarly journals An Improved Jitter Detection Method Based on Parallax Observation of Multispectral Sensors for Gaofen-1 02/03/04 Satellites

2018 ◽  
Vol 11 (1) ◽  
pp. 16 ◽  
Author(s):  
Ying Zhu ◽  
Mi Wang ◽  
Yufeng Cheng ◽  
Luxiao He ◽  
Lin Xue

Gaofen-1 02/03/04 satellites, the first civilian high resolution optical operational constellation in China, have Earth observation capabilities with panchromatic/multispectral imaging at 2/8 m resolution. Satellite jitter, the fluctuation of satellite points, has a negative influence on the geometric quality of high-resolution optical satellite imagery. This paper presents an improved jitter detection method based on parallax observation of multispectral sensors for Gaofen-1 02/03/04 satellites, which can eliminate the effect of the relative internal error induced by lens distortion, and accurately estimate the parameters of satellite jitter. The relative internal error is estimated by polynomial modelling and removed from the original parallax image generated by pixel-to-pixel image matching between two bands of images. The accurate relative time-varying error and absolute distortion caused by satellite jitter could be estimated by using the sine function. Three datasets of multispectral images captured by Gaofen-1 02/03/04 satellites were used to conduct the experiments. The results show that the relative system errors in both the across- and along-track directions can be modelled with a quadratic polynomial, and satellite jitter with a frequency of 1.1–1.2 Hz in the across-track direction was detected for the first time. The amplitude of the jitter differed in the three datasets. The largest amplitude, from satellite 04, is 1.3 pixels. The smallest amplitude, from satellite 02, is 0.077 pixels. The reliability and accuracy of the detection results were verified by using two groups of band combinations and ortho-images with a 1 m resolution. The comparison results show that the detection accuracy is improved by approximately 30% using the proposed method.

2022 ◽  
Vol 14 (2) ◽  
pp. 342
Author(s):  
Ying Zhu ◽  
Tingting Yang ◽  
Mi Wang ◽  
Hanyu Hong ◽  
Yaozong Zhang ◽  
...  

Satellite platform jitter is a non-negligible factor that affects the image quality of optical cameras. Considering the limitations of traditional platform jitter detection methods that are based on attitude sensors and remote sensing images, this paper proposed a jitter detection method using sequence CMOS images captured by rolling shutter for high-resolution remote sensing satellite. Through the three main steps of dense matching, relative jitter error analysis, and absolute jitter error modeling using sequence CMOS images, the periodic jitter error on the imaging focal plane of the spaceborne camera was able to be measured accurately. The experiments using three datasets with different jitter frequencies simulated from real remote sensing data were conducted. The experimental results showed that the jitter detection method using sequence CMOS images proposed in this paper can accurately recover the frequency, amplitude, and initial phase information of satellite jitter at 100 Hz, 10 Hz, and 2 Hz. Additionally, the detection accuracy reached 0.02 pixels, which can provide a reliable data basis for remote sensing image jitter error compensation.


2019 ◽  
Vol 9 (18) ◽  
pp. 3781 ◽  
Author(s):  
Yadan Li ◽  
Zhenqi Han ◽  
Haoyu Xu ◽  
Lizhuang Liu ◽  
Xiaoqiang Li ◽  
...  

Due to the high proportion of aircraft faults caused by cracks in aircraft structures, crack inspection in aircraft structures has long played an important role in the aviation industry. The existing approaches, however, are time-consuming or have poor accuracy, given the complex background of aircraft structure images. In order to solve these problems, we propose the YOLOv3-Lite method, which combines depthwise separable convolution, feature pyramids, and YOLOv3. Depthwise separable convolution is employed to design the backbone network for reducing parameters and for extracting crack features effectively. Then, the feature pyramid joins together low-resolution, semantically strong features at a high-resolution for obtaining rich semantics. Finally, YOLOv3 is used for the bounding box regression. YOLOv3-Lite is a fast and accurate crack detection method, which can be used on aircraft structure such as fuselage or engine blades. The result shows that, with almost no loss of detection accuracy, the speed of YOLOv3-Lite is 50% more than that of YOLOv3. It can be concluded that YOLOv3-Lite can reach state-of-the-art performance.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5369
Author(s):  
Yanjun Wang ◽  
Gang Li ◽  
Wenjuan Yan ◽  
Guoquan He ◽  
Ling Lin

Transmission multispectral imaging (TMI) has potential value for medical applications, such as early screening for breast cancer. However, because biological tissue has strong scattering and absorption characteristics, the heterogeneity detection capability of TMI is poor. Many techniques, such as frame accumulation and shape function signal modulation/demodulation techniques, can improve detection accuracy. In this work, we develop a heterogeneity detection method by combining the contour features and spectral features of TMI. Firstly, the acquisition experiment of the phantom multispectral images was designed. Secondly, the signal-to-noise ratio (SNR) and grayscale level were improved by combining frame accumulation with shape function signal modulation and demodulation techniques. Then, an image exponential downsampling pyramid and Laplace operator were used to roughly extract and fuse the contours of all heterogeneities in images produced by a variety of wavelengths. Finally, we used the hypothesis of invariant parameters to do heterogeneity classification. Experimental results show that these invariant parameters can effectively distinguish heterogeneities with various thicknesses. Moreover, this method may provide a reference for heterogeneity detection in TMI.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1581
Author(s):  
Xiaolong Chen ◽  
Jian Li ◽  
Shuowen Huang ◽  
Hao Cui ◽  
Peirong Liu ◽  
...  

Cracks are one of the main distresses that occur on concrete surfaces. Traditional methods for detecting cracks based on two-dimensional (2D) images can be hampered by stains, shadows, and other artifacts, while various three-dimensional (3D) crack-detection techniques, using point clouds, are less affected in this regard but are limited by the measurement accuracy of the 3D laser scanner. In this study, we propose an automatic crack-detection method that fuses 3D point clouds and 2D images based on an improved Otsu algorithm, which consists of the following four major procedures. First, a high-precision registration of a depth image projected from 3D point clouds and 2D images is performed. Second, pixel-level image fusion is performed, which fuses the depth and gray information. Third, a rough crack image is obtained from the fusion image using the improved Otsu method. Finally, the connected domain labeling and morphological methods are used to finely extract the cracks. Experimentally, the proposed method was tested at multiple scales and with various types of concrete crack. The results demonstrate that the proposed method can achieve an average precision of 89.0%, recall of 84.8%, and F1 score of 86.7%, performing significantly better than the single image (average F1 score of 67.6%) and single point cloud (average F1 score of 76.0%) methods. Accordingly, the proposed method has high detection accuracy and universality, indicating its wide potential application as an automatic method for concrete-crack detection.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 197
Author(s):  
Meng-ting Fang ◽  
Zhong-ju Chen ◽  
Krzysztof Przystupa ◽  
Tao Li ◽  
Michal Majka ◽  
...  

Examination is a way to select talents, and a perfect invigilation strategy can improve the fairness of the examination. To realize the automatic detection of abnormal behavior in the examination room, the method based on the improved YOLOv3 (The third version of the You Only Look Once algorithm) algorithm is proposed. The YOLOv3 algorithm is improved by using the K-Means algorithm, GIoUloss, focal loss, and Darknet32. In addition, the frame-alternate dual-thread method is used to optimize the detection process. The research results show that the improved YOLOv3 algorithm can improve both the detection accuracy and detection speed. The frame-alternate dual-thread method can greatly increase the detection speed. The mean Average Precision (mAP) of the improved YOLOv3 algorithm on the test set reached 88.53%, and the detection speed reached 42 Frames Per Second (FPS) in the frame-alternate dual-thread detection method. The research results provide a certain reference for automated invigilation.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 4673-4687
Author(s):  
Jixiang Zhao ◽  
Shanwei Liu ◽  
Jianhua Wan ◽  
Muhammad Yasir ◽  
Huayu Li

Author(s):  
Chuan Ye ◽  
Liming Zhao ◽  
Qiyan Wang ◽  
Bo Pan ◽  
Youchun Xie ◽  
...  

Abstract In order to accurately detect the abnormal looseness of strapping in the process of steel coil hoisting, an accurate detection method of strapping abnormality based on CCD structured light active imaging is proposed. Firstly, a maximum entropy laser stripe automatic segmentation model integrating multi-scale saliency features is constructed. With the help of saliency detection model, the purpose is to reduce the interference of the environment to the laser stripe and highlight the distinguishability between the stripe and the background. Then, the maximum entropy is used to segment the fused saliency features and accurately extract the stripe contour. Finally, the stripe normal field is obtained by calculating the stripe gradient vector, the stripe center line is extracted based on the stripe distribution normal direction, and the abnormal strapping is recognized online according to the stripe center. Experiments show that the proposed method is effective in terms of detection accuracy and time efficiency, and has certain engineering application value.


Sign in / Sign up

Export Citation Format

Share Document