scholarly journals Quantitative Aerosol Optical Depth Detection during Dust Outbreaks from Meteosat Imagery Using an Artificial Neural Network Model

2019 ◽  
Vol 11 (9) ◽  
pp. 1022 ◽  
Author(s):  
Stavros Kolios ◽  
Nikos Hatzianastassiou

This study presents the development of an artificial neural network (ANN) model to quantitatively estimate the atmospheric aerosol load (in terms of aerosol optical depth, AOD), with an emphasis on dust, over the Mediterranean basin using images from Meteosat satellites as initial information. More specifically, a back-propagation ANN model scheme was developed to estimate visible (at 550 nm) aerosol optical depth (AOD550 nm) values at equal temporal (15 min) and spatial (4 km) resolutions with Meteosat imagery. Accuracy of the ANN model was thoroughly tested by comparing model estimations with ground-based AOD550 nm measurements from 14 AERONET (Aerosol Robotic NETwork) stations over the Mediterranean for 34 selected days in which significant dust loads were recorded over the Mediterranean basin. Using a testbed of 3076 pairs of modeled and measured AOD550 nm values, a Pearson correlation coefficient (rP) equal to 0.91 and a mean absolute error (MAE) of 0.031 were found, proving the satisfactory accuracy of the developed model for estimating AOD550 nm values.

2021 ◽  
Author(s):  
Chuan-Yong Zhu ◽  
Zhi-Yang He ◽  
Mu Du ◽  
Liang Gong ◽  
Xinyu Wang

Abstract The effective thermal conductivity of soils is a crucial parameter for many applications such as geothermal engineering, environmental science, and agriculture and engineering. However, it is pretty challenging to accurately determine it due to soils’ complex structure and components. In the present study, the influences of different parameters, including silt content (m si), sand content (m sa), clay content (m cl), quartz content (m qu), porosity, and water content on the effective thermal conductivity of soils, were firstly analyzed by the Pearson correlation coefficient. Then different artificial neural network (ANN) models were developed based on the 465 groups of thermal conductivity of unfrozen soils collected from the literature to predict the effective thermal conductivity of soils. Results reveal that the parameters of m si, m sa, m cl, and m qu have a relatively slight influence on the effective thermal conductivity of soils compared to the water content and porosity. Although the ANN model with six parameters has the highest accuracy, the ANN model with two input parameters (porosity and water content) could predict the effective thermal conductivity well with acceptable accuracy and R 2=0.940. Finally, a correlation of the effective thermal conductivity for different soils was proposed based on the large number of results predicted by the two input parameters ANN-based model. This correlation has proved to have a higher accuracy without assumptions and uncertain parameters when compared to several commonly used existing models.


2019 ◽  
Vol 11 (24) ◽  
pp. 2931
Author(s):  
Zhigang Yao ◽  
Jun Li ◽  
Zengliang Zhao ◽  
Lin Zhu ◽  
Jin Qi ◽  
...  

Two back-propagation artificial neural network retrieval models have been developed for obtaining the dust aerosol optical depth (AOD) and dust-top height (DTH), respectively, from Atmospheric InfraRed Sounder (AIRS) brightness temperature (BT) measurements over Taklimakan Desert area. China Aerosol Remote Sensing Network (CARSNET) measurements at Tazhong station were used for dust AOD validation. Results show that the correlation coefficient of dust AODs between AIRS and CARSNET reaches 0.88 with a deviation of −0.21, which is the same correlation coefficient as the AIRS dust AOD and the Moderate-Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) product. In the AIRS DTH retrieval model, there is an option to include the collocated MODIS deep blue (DB) AOD as additional input for daytime retrieval; the independent dust heights from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) are used for AIRS DTH validation, and results show that the DTHs derived from the combined AIRS BT measurements and MODIS DB AOD product have better accuracy than those from AIRS BT measurements alone. The correlation coefficient of DTHs between AIRS and independent CALIOP dust heights is 0.79 with a standard deviation of 0.41 km when MODIS DB AOD product is included in the retrieval model. A series of case studies from different seasons were examined to demonstrate the feasibility of retrieving dust parameters from AIRS and potential applications. The method and approaches can be applied to process measurements from advanced infrared (IR) sounder and high-resolution imager onboard the same platform.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1448
Author(s):  
Nam-Gyu Lim ◽  
Jae-Yeol Kim ◽  
Seongjun Lee

Battery applications, such as electric vehicles, electric propulsion ships, and energy storage systems, are developing rapidly, and battery management issues are gaining attention. In this application field, a battery system with a high capacity and high power in which numerous battery cells are connected in series and parallel is used. Therefore, research on a battery management system (BMS) to which various algorithms are applied for efficient use and safe operation of batteries is being conducted. In general, maintenance/replacement of multi-series/multiple parallel battery systems is only possible when there is no load current, or the entire system is shut down. However, if the circulating current generated by the voltage difference between the newly added battery and the existing battery pack is less than the allowable current of the system, the new battery can be connected while the system is running, which is called hot swapping. The circulating current generated during the hot-swap operation is determined by the battery’s state of charge (SOC), the parallel configuration of the battery system, temperature, aging, operating point, and differences in the load current. Therefore, since there is a limit to formulating a circulating current that changes in size according to these various conditions, this paper presents a circulating current estimation method, using an artificial neural network (ANN). The ANN model for estimating the hot-swap circulating current is designed for a 1S4P lithium battery pack system, consisting of one series and four parallel cells. The circulating current of the ANN model proposed in this paper is experimentally verified to be able to estimate the actual value within a 6% error range.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Sign in / Sign up

Export Citation Format

Share Document