scholarly journals Investigating Spatiotemporal Patterns of Surface Urban Heat Islands in the Hangzhou Metropolitan Area, China, 2000–2015

2019 ◽  
Vol 11 (13) ◽  
pp. 1553 ◽  
Author(s):  
Fei Li ◽  
Weiwei Sun ◽  
Gang Yang ◽  
Qihao Weng

Rapid urbanization has resulted in a serious urban heat island effect in the Hangzhou Metropolitan Area of China during the past decades, negatively impacting the area’s sustainable development. Using Landsat images from 2000 to 2015, this paper analysed the spatial-temporal patterns in a surface urban heat island (SUHI) and investigated its relationship with urbanization. The derived land surface temperature (LST) and surface urban heat island intensity (SUHII) were used to quantify the SUHI effect. Spatial analysis was employed to illustrate the spatial distribution and evolution of a SUHI. The geographically weighted regression (GWR) model was implemented to identify statistically significant factors that influenced the change of SUHII. The results show that hot and very hot spot areas increased from 387 km2 in 2000 to 615 km2 in 2015, and the spatial distribution changed from a monocentric to a polycentric pattern. The results also indicate that high-LST clusters moved towards the east, which was consistent with urban expansion throughout the study period. These changes mirrored the intensive development of three satellite towns. The statistical analysis suggests that both population density (e.g., changes in population density, CPOPD) and green space (e.g., changes in green space fraction, CGSF) strongly affected the changes in SUHII at different stages of the urbanization process. Increasing in population density has a lastingly effect on elevating the SUHII, whereas increasing green space has a constantly significant effect in mitigating the SUHII. These findings suggest that urban planners and policymakers should protect the cultivated lands in suburbs and exurbs, and make efforts to improve the utilization efficiency of construction land by encouraging the migrating population to live within the existing built-up regions.

2013 ◽  
Vol 52 (11) ◽  
pp. 2418-2433 ◽  
Author(s):  
A. M. E. Winguth ◽  
B. Kelp

AbstractHourly surface temperature differences between Dallas–Fort Worth, Texas, metropolitan and rural sites have been used to calculate the urban heat island from 2001 to 2011. The heat island peaked after sunset and was particularly strong during the drought and heat wave in July 2011, reaching a single-day instantaneous maximum value of 5.4°C and a monthly mean maximum of 3.4°C, as compared with the 2001–11 July average of 2.4°C. This severe drought caused faster warming of rural locations relative to the metropolitan area in the morning as a result of lower soil moisture content, which led to an average negative heat island in July 2011 of −2.3°C at 1100 central standard time. The ground-based assessment of canopy air temperature at screening level has been supported by a remotely sensed surface estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite, highlighting a dual-peak maximum heat island in the major city centers of Dallas and Fort Worth. Both ground-based and remotely sensed spatial analyses of the maximum heat island indicate a northwest shift, the result of southeast winds in July 2011 of ~2 m s−1 on average. There was an overall positive trend in the urban heat island of 0.14°C decade−1 in the Dallas–Fort Worth metropolitan area from 2001 to 2011, due to rapid urbanization. Superimposed on this trend are significant interannual and decadal variations that influence the urban climate.


2021 ◽  
Author(s):  
Emily Elhacham ◽  
Pinhas Alpert

<p>Over a billion people currently live in coastal areas, and coastal urbanization is rapidly growing worldwide. Here, we explore the impact of an extreme and rapid coastal urbanization on near-surface climatic variables, based on MODIS data, Landsat and some in-situ observations. We study Dubai, one of the fastest growing cities in the world over the last two decades. Dubai's urbanization centers along its coastline – in land, massive skyscrapers and infrastructure have been built, while in sea, just nearby, unique artificial islands have been constructed.</p><p>Studying the coastline during the years of intense urbanization (2001-2014), we show that the coastline exhibits surface urban heat island characteristics, where the urban center experiences higher temperatures, by as much as 2.0°C and more, compared to the adjacent less urbanized zones. During development, the coastal surface urban heat island has nearly doubled its size, expanding towards the newly developed areas. This newly developed zone also exhibited the largest temperature trend along the coast, exceeding 0.1°C/year on average.</p><p>Overall, we found that over land, temperature increases go along with albedo decreases, while in sea, surface temperature decreases and albedo increases were observed particularly over the artificial islands. These trends in land and sea temperatures affect the land-sea temperature gradient which influences the breeze intensity. The above findings, along with the increasing relative humidity shown, directly affect the local population and ecosystem and add additional burden to this area, which is already considered as one of the warmest in the world and a climate change 'hot spot'.</p><p> </p><p><strong>References:</strong></p><p>E. Elhacham and P. Alpert, "Impact of coastline-intensive anthropogenic activities on the atmosphere from moderate resolution imaging spectroradiometer (MODIS) data in Dubai (2001–2014)", <em>Earth’s Future</em>, 4, 2016. https://doi.org/10.1002/2015EF000325</p><p>E. Elhacham and P. Alpert, "Temperature patterns along an arid coastline experiencing extreme and rapid urbanization, case study: Dubai", submitted.</p>


Urbani izziv ◽  
2019 ◽  
Vol 2 (30) ◽  
pp. 105-112
Author(s):  
Gordana Kaplan

Rapid urbanization has several negative effects on both the environment and human health. Urbanization has also become an important contributor to global warming. One of these effects is the urban heat island (UHI), which is caused by human activities and defined as the temperature difference between urban and surrounding rural areas. With rapid urbanization in the past few decades, Skopje has experienced remarkable UHI effects. To investigate the roles of built-up and green areas in a surface UHI, this article uses satellite data from Landsat ETM+ to analyse the land surface temperature and high-resolution Planet Scope DOVE data to analyse built-up and green areas. For geostatistical analyses, seventeen randomly selected subareas in Skopje were used. The results show a significant correlation between the UHI and built-up areas, and strong correlation between green areas and areas not affected by the UHI, indicating that the UHI effect can be significantly weakened with additional green areas. One of the significant findings in the study is the ideal proportion of built-up (40%) and green areas (60%), where the UHI effect is weak, or in some cases prevented. For future studies, investigating other factors that may contribute to the UHI phenomenon is suggested.


2020 ◽  
Vol 12 (3) ◽  
pp. 1171 ◽  
Author(s):  
Hongyu Du ◽  
Fengqi Zhou ◽  
Chunlan Li ◽  
Wenbo Cai ◽  
Hong Jiang ◽  
...  

In the trend of global warming and urbanization, frequent extreme weather influences the life of citizens seriously. Shanghai, as a typical mega-city in China that has been successful in urbanization, suffers seriously from the urban heat island (UHI) effect. The research concentrates on the spatial and temporal pattern of surface UHI and land use. Then, the relation between them are further discussed. The results show that for the last 15 years, the UHI effect of Shanghai has been increasing continuously in both intensity and area. The UHI extends from the city center toward the suburban area. Along with the year, the ratio in area of Agricultural Land (AL), Wetland (WL), and Bare Land (BL) has decreased. On the contrary, Construction Land (CL) and Green Land (GL) have increased. The average land surface temperature (LST) rankings for each research year from high to low were all CL, BL, GL, AL, and WL. CL contributed the most to the UHI effect, while WL and GL contributed the most to mitigate the UHI. The conclusion provides practical advice aimed to mitigate the UHI effect for urban planning authorities.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1368
Author(s):  
Alireza Karimi ◽  
Pir Mohammad ◽  
Sadaf Gachkar ◽  
Darya Gachkar ◽  
Antonio García-Martínez ◽  
...  

This study investigates the diurnal, seasonal, monthly and temporal variation of land surface temperature (LST) and surface urban heat island intensity (SUHII) over the Isfahan metropolitan area, Iran, during 2003–2019 using MODIS data. It also examines the driving factors of SUHII like cropland, built-up areas (BI), the urban–rural difference in enhanced vegetation index (ΔEVI), evapotranspiration (ΔET), and white sky albedo (ΔWSA). The results reveal the presence of urban cool islands during the daytime and urban heat islands at night. The maximum SUHII was observed at 22:30 pm, while the minimum was at 10:30 am. The summer months (June to September) show higher SUHII compared to the winter months (February to May). The daytime SUHII demonstrates a robust positive correlation with cropland and ΔWSA, and a negative correlation with ΔET, ΔEVI, and BI. The nighttime SUHII displays a negative correlation with ΔET and ΔEVI.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1271
Author(s):  
Yatong Zhang ◽  
Delong Li ◽  
Laibao Liu ◽  
Ze Liang ◽  
Jiashu Shen ◽  
...  

The increasing degree of urbanization has continuously aggravated the surface urban heat island (sUHI) effect in China. To investigate the correlation between spatiotemporal changes of sUHI and urbanization in Beijing, land surface temperature in summer from 2000 to 2017 and the distribution of local climate zones (LCZs) in 2003, 2005, 2010, and 2017 was retrieved using remote sensing data and used to analyze the sUHI area and intensity change. The statistical method GeoDetector was utilized to investigate the explanatory ability of LCZs and population as the driving factors. The year of 2006 was identified as the main turning year for sUHI evolution. The variation the sUHI from 2000 showed first an increasing trend, and then a decreasing one. The sUHI pattern changed before and after 2009. Before 2009, the sUHI mainly increased in the suburbs, and then, the enhancement area moved to the central area. The sUHI intensity change under different LCZ conversion conditions showed that the LCZ conversion influences the sUHI intensity significantly. Based on population distribution data, we found that the relationship between population density and sUHI gets weaker with increasing population density. The result of GeoDetector indicated that the LCZ is the main factor influencing the sUHI, but population density is an important auxiliary factor. This research reveals the sUHI variation pattern in Beijing from 2000 and could help city managers plan thermally comfortable urban environments with a better understanding of the effect of urban spatial form and population density on sUHIs.


Sign in / Sign up

Export Citation Format

Share Document