scholarly journals On the Combination of Remote Sensing and Geophysical Methods for the Digitalization of the San Lázaro Middle Paleolithic Rock Shelter (Segovia, Central Iberia, Spain)

2019 ◽  
Vol 11 (17) ◽  
pp. 2035 ◽  
Author(s):  
Miguel Ángel Maté-González ◽  
Luis Javier Sánchez-Aparicio ◽  
Cristina Sáez Blázquez ◽  
Pedro Carrasco García ◽  
David Álvarez-Alonso ◽  
...  

This paper is focused on the Middle Paleolithic rock shelter called “Abrigo de San Lázaro”, placed in the Eresma River valley (Segovia, Spain). In this area, a multisource geomatic approach is used. On the one hand, the external envelope of the shelter has been digitalized by the means of an efficient combination between aerial photogrammetry and laser scanning (static and mobile). On the other hand, the ground penetrating radar and the electric tomography were used with the aim of evaluating the inner disposition of the shelter. The combination of both digitalization (external and internal) has allowed for improving the knowledge of the site characteristics that, in turn, will facilitate the future excavation works. The results of these studies allow archaeologists to know new data for a better understanding of the site formation (geology of the site, sedimentary potential, rock shelter dimensions, etc.) and the events that took place in it (knowing its historical evolution, especially the interaction between man and the environment). Additionally, the information obtained from these studies is very useful to plan future excavation works on the site.

Author(s):  
Imad L. Al-Qadi ◽  
Samer Lahouar ◽  
Amara Loulizi

The successful application of ground-penetrating radar (GPR) as a quality assurance–quality control tool to measure the layer thicknesses of newly built pavement systems is described. A study was conducted on a newly built test section of Route 288 located near Richmond, Virginia. The test section is a three-lane, 370-m-long flexible pavement system composed of a granular base layer and three different hot-mix asphalt (HMA) lifts. GPR surveys were conducted on each lift of the HMA layers after they were constructed. To estimate the layer thicknesses, GPR data were analyzed by using simplified equations in the time domain. The accuracies of the GPR system results were checked by comparing the thicknesses predicted with the GPR to the thicknesses measured directly from a large number of cores taken from the different HMA lifts. This comparison revealed a mean thickness error of 2.9% for HMA layers ranging in thickness from 100 mm (4 in.) to 250 mm (10 in.). This error is similar to the one obtained from the direct measurement of core thickness.


2012 ◽  
Vol 6 (6) ◽  
pp. 1435-1443 ◽  
Author(s):  
A. Gusmeroli ◽  
G. Grosse

Abstract. Lakes are abundant throughout the pan-Arctic region. For many of these lakes ice cover lasts for up to two thirds of the year. The frozen cover allows human access to these lakes, which are therefore used for many subsistence and recreational activities, including water harvesting, fishing, and skiing. Safe traveling condition onto lakes may be compromised, however, when, after significant snowfall, the weight of the snow acts on the ice and causes liquid water to spill through weak spots and overflow at the snow-ice interface. Since visual detection of subsnow slush is almost impossible our understanding on overflow processes is still very limited and geophysical methods that allow water and slush detection are desirable. In this study we demonstrate that a commercially available, lightweight 1 GHz, ground penetrating radar system can detect and map extent and intensity of overflow. The strength of radar reflections from wet snow-ice interfaces are at least twice as much in strength than returns from dry snow-ice interface. The presence of overflow also affects the quality of radar returns from the base of the lake ice. During dry conditions we were able to profile ice thickness of up to 1 m, conversely, we did not retrieve any ice-water returns in areas affected by overflow.


2020 ◽  
Vol 174 ◽  
pp. 01009
Author(s):  
Dmitry Sirota ◽  
Sergei Prostov ◽  
Egor Rasumov ◽  
Nikolay Loskutov

In this article we will discus the usage feature of the ground penetrating radar (GPR) for the solution underground geotechnologies problems. One of the main problems by the usage GPR method is that the surface of the workings is shielded by metal elements of support (frames, fittings, tightening and other). In this article we suggest to use one- dimensional GPR-scanning method instead of traditional GPR-profiling method. We assume that the scanning will be performed on the development contour in areas free from shielding. For justification one- dimensional GPR method we propose a mathematical model for the propagation of an electromagnetic signal in an inhomogeneous medium based on classical equations of electrodynamics. We also present a numerical implementation of it, which confirms the validity of the accepted problem statement.


Author(s):  
Horst G. Brandes

The effectiveness of electromagnetic (EM), ground penetrating radar (GPR) and seismic refraction (SR) were evaluated by surveying a shallow trench in which a number of objects of varying composition and size were buried. The trench was excavated in granular calcareous fill material. An experienced geophysical contractor was asked to provide blind predictions of object locations using each of the techniques in turn. GPR with a 400 MHz antenna was the most successful, followed by SR and EM surveying. GPR and SR were also carried out at the port of Hilo to investigate complex subsurface conditions.


2020 ◽  
Vol 53 (4) ◽  
pp. 620-644 ◽  
Author(s):  
Zoe Elizabeth Jeffery ◽  
Stephen Penn ◽  
David Peter Giles ◽  
Linley Hastewell

The chalk bedrock of the Hampshire Basin, southern England is an important aquifer and is highly susceptible to dissolution, making the development and presence of karstic features a widespread occurrence. These features are hazardous because they provide possible pathways to the underlying aquifer and therefore present potential site-specific contamination risks. There is also evidence of extensive extraction, through both mining and surface quarrying, of chalk, flint and clay over many centuries. Geophysical techniques consisting of electromagnetic (EM31) and ground-penetrating radar surveys were used to identify and characterize target features identified from desk study data. The ground-penetrating radar and EM31 interpretations allowed the classification of non-anthropogenic target features, such as diffuse buried sinkholes with disturbed and subsiding clay-rich infill and varying symmetrical and asymmetrical morphologies. We describe here the investigations of such features identified at Holme Farm, Stansted House, Hampshire. The combination of EM31 data and ground-penetrating radar profiles facilitated the identification of a palaeovalley, cavities and irregular rockhead. This investigation identified locations of aquifer contamination risk as some sinkholes have been sites for the illegal dumping of waste or the infiltration of fertilizers, leaking sewage pipes or animal waste. This potential source of contamination utilizes the sinkhole as a pathway into the highly transmissive White Chalk Subgroup of Hampshire and has caused contamination of the aquifer. We conclude that our integrated approach of geophysical techniques linked to aerial photographs and LiDAR image interpretation was highly effective in the location and characterization of dissolution structures, infilled former quarries and mining features at this site.


2018 ◽  
Vol 23 (3) ◽  
pp. 377-381
Author(s):  
Widodo Widodo ◽  
Azizatun Azimmah ◽  
Djoko Santoso

Investigating underground cavities is vital due to their potential for subsidence and total collapse. One of the proven geophysical methods for locating underground cavities at a shallow depth is ground penetrating radar (GPR). GPR uses contrasting dielectric permittivity, resistivity, and magnetic permeability to map the subsurface. The aim of this research is to prove that GPR can be applied to detect underground cavities in the Japan Cave of Taman Hutan Raya Djuanda, in Bandung, Indonesia. Forward modeling was performed first using three representative synthetic models before field data were acquired. The data acquisition was then conducted using a 100 MHz GPR shielded antenna with three lines of 80 m and one additional line 10 m long. The result showed a region of different reflection amplitude, which was proven to be the air-filled cavities.


2016 ◽  
Vol 46 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Larissa Natsumi Tamura ◽  
Renato Paes de Almeida ◽  
Fabio Taioli ◽  
André Marconato ◽  
Liliane Janikian

ABSTRACT: One key factor for the advance in the study of fluvial deposits is the application of geophysical methods, being the Ground Penetrating Radar one of special value. Although applied to active rivers, the method is not extensively tested on the rock record, bearing interest for hydrocarbon reservoir analogue models. The São Sebastião and Marizal formations were the subject of previous studies, which made possible the comparison of Ground Penetrating Radar survey to previous stratigraphic studies in order to identify the best combination of resolution, penetration and antenna frequency for the studied subject. Eight radar facies were identified, being six of them related to fluvial sedimentary environments, one related to eolian sedimentary environment and one radar facies interpreted as coastal sedimentary environment. The Ground Penetrating Radar data showed compatibility to sedimentary structures in the outcrops, like planar and trough cross-stratified beds. It is noted that the obtained resolution was efficient in the identification of structures up to 0.3 m using a 100 MHz antenna. In this way, the Ground Penetrating Radar survey in outcrops bears great potential for further works on fluvial depositional architecture.


2011 ◽  
Vol 374-377 ◽  
pp. 2256-2260
Author(s):  
Sun Yong

In the process of engineering prospective design and constructing, it is necessary to avoid the adverse impact of geological phenomena, such as fault, karst and landslide. Therefore, it’s important to choose a favorable project address by scientific and effective detection with engineering geological conditions. The main exploration method for geological conditions is the geophysical exploration, including: high density electrical method, ground penetrating Radar, seismic exploration method and so on. The discrimination result with a single geological method changes much, and it is difficult to make an accurate analysis of the geological conditions. So we should composite a variety of exploration methods. In this paper, it expounds the fundamental, the working method, data explanations of the high density electrical method and ground penetrating Radar firstly. And then it takes exploration of candidate sites of an aluminum waste disposal plant for example, the geological conditions of candidate sites are analyzed under the two geophysical methods. The study results of engineering site option have a positive role in guiding the work.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. H97-H113 ◽  
Author(s):  
Diego Domenzain ◽  
John Bradford ◽  
Jodi Mead

We have developed an algorithm for joint inversion of full-waveform ground-penetrating radar (GPR) and electrical resistivity (ER) data. The GPR data are sensitive to electrical permittivity through reflectivity and velocity, and electrical conductivity through reflectivity and attenuation. The ER data are directly sensitive to the electrical conductivity. The two types of data are inherently linked through Maxwell’s equations, and we jointly invert them. Our results show that the two types of data work cooperatively to effectively regularize each other while honoring the physics of the geophysical methods. We first compute sensitivity updates separately for the GPR and ER data using the adjoint method, and then we sum these updates to account for both types of sensitivities. The sensitivities are added with the paradigm of letting both data types always contribute to our inversion in proportion to how well their respective objective functions are being resolved in each iteration. Our algorithm makes no assumptions of the subsurface geometry nor the structural similarities between the parameters with the caveat of needing a good initial model. We find that our joint inversion outperforms the GPR and ER separate inversions, and we determine that GPR effectively supports ER in regions of low conductivity, whereas ER supports GPR in regions with strong attenuation.


Sign in / Sign up

Export Citation Format

Share Document