scholarly journals A Novel Approach for Estimation of Above-Ground Biomass of Sugar Beet Based on Wavelength Selection and Optimized Support Vector Machine

2020 ◽  
Vol 12 (4) ◽  
pp. 620 ◽  
Author(s):  
Jing Zhang ◽  
Haiqing Tian ◽  
Di Wang ◽  
Haijun Li ◽  
Abdul Mounem Mouazen

Timely diagnosis of sugar beet above-ground biomass (AGB) is critical for the prediction of yield and optimal precision crop management. This study established an optimal quantitative prediction model of AGB of sugar beet by using hyperspectral data. Three experiment campaigns in 2014, 2015 and 2018 were conducted to collect ground-based hyperspectral data at three different growth stages, across different sites, for different cultivars and nitrogen (N) application rates. A competitive adaptive reweighted sampling (CARS) algorithm was applied to select the most sensitive wavelengths to AGB. This was followed by developing a novel modified differential evolution grey wolf optimization algorithm (MDE–GWO) by introducing differential evolution algorithm (DE) and dynamic non-linear convergence factor to grey wolf optimization algorithm (GWO) to optimize the parameters c and γ of a support vector machine (SVM) model for the prediction of AGB. The prediction performance of SVM models under the three GWO, DE–GWO and MDE–GWO optimization methods for CARS selected wavelengths and whole spectral data was examined. Results showed that CARS resulted in a huge wavelength reduction of 97.4% for the rapid growth stage of leaf cluster, 97.2% for the sugar growth stage and 97.4% for the sugar accumulation stage. Models resulted after CARS wavelength selection were found to be more accurate than models developed using the entire spectral data. The best prediction accuracy was achieved after the MDE–GWO optimization of SVM model parameters for the prediction of AGB in sugar beet, independent of growing stage, years, sites and cultivars. The best coefficient of determination (R2), root mean square error (RMSE) and residual prediction deviation (RPD) ranged, respectively, from 0.74 to 0.80, 46.17 to 65.68 g/m2 and 1.42 to 1.97 for the rapid growth stage of leaf cluster, 0.78 to 0.80, 30.16 to 37.03 g/m2 and 1.69 to 2.03 for the sugar growth stage, and 0.69 to 0.74, 40.17 to 104.08 g/m2 and 1.61 to 1.95 for the sugar accumulation stage. It can be concluded that the methodology proposed can be implemented for the prediction of AGB of sugar beet using proximal hyperspectral sensors under a wide range of environmental conditions.

2021 ◽  
Vol 18 (4) ◽  
pp. 1275-1281
Author(s):  
R. Sudha ◽  
G. Indirani ◽  
S. Selvamuthukumaran

Resource management is a significant task of scheduling and allocating resources to applications to meet the required Quality of Service (QoS) limitations by the minimization of overhead with an effective resource utilization. This paper presents a Fog-enabled Cloud computing resource management model for smart homes by the Improved Grey Wolf Optimization Strategy. Besides, Kernel Support Vector Machine (KSVM) model is applied for series forecasting of time and also of processing load of a distributed server and determine the proper resources which should be allocated for the optimization of the service response time. The presented IGWO-KSVM model has been simulated under several aspects and the outcome exhibited the outstanding performance of the presented model.


2021 ◽  
Author(s):  
Ahana priynaka ◽  
Kavitha Ganesan

Abstract Prognosis of in a dementia disorder is a tedious task in preclinical stage. Ventricle pathology changes in dementia appear to be overlapped for neuro degeneration in brain. Identification of these overlaps among the groups severity helps to understand the pathogenesis of this disorder. In this work impact of changes in ventricle region on severity stages of dementia is observed using dual deep learning techniques (DDLT). Alzheimer's Disease Neuroimaging Initiative (ADNI) database that contains 1169 MR images are used in this study. Segmentation of ventricle region is carried out using multilevel threshold based Grey Wolf Optimization (GWO) technique. The feature vectors obtained from combined AlexNet and ResNet are analysed. The fused feature vectors are given to support vector machine (SVM) to observe the severity changes. Consequently, symmetry analysis of ventricle is carried out to perceive the distinctive changes in progression. The obtained results show that ventricle region is accurately delineated from other region with optimized thresholds. The segmented ventricle shows better correlation for all considered classes (> 0.9). It is observed that DDLT with multiclass SVM provides an improved accuracy of about 79.87% compared to individual transfer learning such as AlexNet (74%) and ResNet (76.53%). Further, symmetry analysis shows that left side ventricle with DDLT features shows an improved performance than right side for onset stages. Further, clinical correlation of left ventricle seems to be statically significant (p<0.0001) which prominently differentiate dementia severity variations. This framework is more prominent and clinically useful to identify the distinct ventricle region variation in dementia.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Binghui Xu ◽  
Tzu-Chia Chen ◽  
Danial Ahangari ◽  
S. M. Alizadeh ◽  
Marischa Elveny ◽  
...  

This paper deals with modeling hydrogen contents of bio-oil (H-BO) as a function of pyrolysis conditions and biomass compositions of feedstock. The support vector machine algorithm optimized by the grey wolf optimization method has been used in modeling this end. Comprehensive data for this purpose were aggregated from previous sources and reports. The results of various analyses showed that this algorithm has a high ability to predict actual results. The calculated values of R2, MRE (%), MSE, and RMSE were obtained as 0.973, 1.98, 0.0568, and 0.241, respectively. According to the results of various analyses, the high performance of this model in predicting the output values was proved. Also, by comparing this model with the previously proposed models in terms of accuracy, it was observed that this model had a better performance. This algorithm can be a good alternative to costly and time-consuming laboratory data.


The forecasting and investigation of finance time series data are hard, and are the most confounded works pertained with investor decision. In this paper, an economic derivative instrument for Multi Commodity Exchange (MCX) index of CRUDEOIL is estimated by utilizing forecasting models based on recently formulated artificial intelligence (AI) approaches. These approaches have been appeared to perform astoundingly well in different optimization problems. Specifically, a novel hybrid forecasting model is designed by combining the support vector machine (SVM) and grey wolf optimization (GWO) and it is named as hybrid SVM-GWO. The presented hybrid SVM-GWO model eliminates the user determined control parameter, which is needed for other AI techniques. The practicality and proficiency of the presented SVM-GWO regression method is evaluated by predicting the everyday close price of CRUDEOIL index traded in the MCX of India Limited. The exploratory outcomes depicts that the present hybrid SVM-GWO technique is viable and outperforms superior to the conventional SVM, hybrid SVM-TLBO and SVM-PSO regression models


Author(s):  
Sathish Eswaramoorthy ◽  
N. Sivakumaran ◽  
Sankaranarayanan Sekaran

Purpose The purpose of this paper is to tune support vector machine (SVM) classifier using grey wolf optimizer (GWO). Design/methodology/approach The schema of the work aims at extracting the features from the collected data followed by a SVM classifier and metaheuristic optimization to tune the classifier parameters. Findings The optimal tuning of classifier parameters lowers errors due to manual elucidation and decreases the risk in human perceptions and repeated visual dignosis. Originality/value A novel, GWO based tuning algorithm is used for SVM classifier, which is implemented in classifying the complex and nonlinear biomedical signals like intracranial electroencephalogram.


Sign in / Sign up

Export Citation Format

Share Document