scholarly journals A Spatio-Temporal Analysis of Active Fires over China during 2003–2016

2020 ◽  
Vol 12 (11) ◽  
pp. 1787
Author(s):  
Xikun Wei ◽  
Guojie Wang ◽  
Tiexi Chen ◽  
Daniel Fiifi Tawia Hagan ◽  
Waheed Ullah

Fire is a common circumstance in the world. It causes direct casualties and economic losses, and also brings severe negative influences on the atmospheric environment. In the background of climate warming and rising population, it is important to understand the fire responses regarding the spatio-temporal changes. Thus, a long-term change analysis of fires is needed in China. We use the remote sensed MOD14A1/MYD14A1 fire products to analyze the seasonal variations and long-term trends, based on five main land cover types (forest, cropland, grassland, savannas and urban areas). The fires are found to have clear seasonal variations; there are more fires in spring and autumn in vegetated lands, which are related to the amount of dry biomass and temperature. The fire numbers have significantly increased during the study period, especially from spring to autumn, and those have decreased in winter. The long-term fire trends are different when delineated into different land cover types. There are significant increasing fire trends in grasslands and croplands in North, East and Northeast China during the study period. The urban fires also show increasing trends. On the contrary, there are significant decreasing fire trends in forests and savannas in South China where it is most densely vegetated. This study provides an overall analysis of the spatio-temporal fire changes from satellite products, and it may help to understand the fire risk in the changing climate for a better risk management.

2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

2021 ◽  
Author(s):  
Madhura Yeligeti ◽  
Wenxuan Hu ◽  
Yvonne Scholz ◽  
Kai von Krbek

<p>Solar photovoltaic (PV) systems will foreseeably be an integral part of future energy systems. Land cover area analysis has a large influence on estimatiin of long-term solar photovoltaic potential of the world in high spatial detail. In this regard, it is often seen in contemporary works, that the suitability of various land cover categories for PV installation is considered in a yes/no binary response. While some areas like natural parks, sanctuaries, forests are usually completely exempted from PV potential calculations, other land over categories like urban settlements, bare, sparsely vegetated areas, and even cropland can principally support PV installations to varying degrees. This depends on the specific land use competition, social, economic and climatic conditions, etc. In this study, we attempt to evaluate these ‘factors of suitability’ of different land cover types for PV installations.</p><p>As a basis, the openly available global land cover datasets from the Copernicus Land Monitoring Service were used to identify major land cover types like cropland, shrubland, bare, wetlands, urban settlements, forests, moss and snow etc. For open area PV installations, with a focus on cropland, we incorporated the promising technology of ‘Agri-voltaics’ in our investigation. Different crops have shown to respond positively or negatively, so far, to growing under PV panels according to various experimental and commercial sources. Hence, we considered 18 major crops of the world (covering 85% of world cropland) individually and consequently, evaluated a weighted overall suitability factor of cropland cover for PV, for three acceptance scenarios of future.</p><p>For rooftop PV installations in urban areas, various socio-economic and geographical influences come in play. The rooftop area available and further usable for PV depends on housing patterns (roof type, housing density) which vary with climate, population density and socio-economic lifestyle. We classified global urban areas into several clusters based on combinations of these factors. For each cluster, rooftop area suitability is evaluated at a representative location using the land cover maps, the Open Street Map and specific characteristics of the cluster.</p><p>Overall, we present an interdisciplinary approach to integrate technological, social and economic aspects in land cover analysis to estimate PV potentials. While the intricacies may still be insufficient for planning small localized energy systems, this can reasonably benefit energy system modelling from a regional to international scale.</p>


2019 ◽  
Vol 8 (4) ◽  
pp. 11949-11955

The monitoring of land surface temperature (LST) can assist scientists to better understand the possible effect of climate change on land cover types and in conducting appropriate analysis. The earth's annual temperature has moved up and down a few degrees Celsius, including Malaysia, over the past few million years. The location of Malaysia near the equator line and experiences tropical monsoon season were important to take into consideration to the LST changes. In this paper, the eight-day LST time series data for 14-year period (Jan 2003 – Dec 2016) was downloaded from Moderate Resolution Imaging Spectroradiometer (MODIS) website with two types of satellites which are Terra and Aqua. This study focused on two gridded areas in Peninsular Malaysia; the first one which is exposed to North East monsoon, namely super region 21 and another one to South West monsoon, which is super region 26. These two areas are selected due to they being the largest land area covered within the grid relative to other grids. The objective of this study is to compare the eight- day daytime LST pattern between two monsoons with different land cover types for both satellites. Analysis such as cubic spline function with the annual periodic boundary condition and weighted least square (WLS) regression were performed to extract annual seasonal trend for the areas covered. The results of LST showed most of the gridded areas experience similar seasonal pattern for each year but different pattern were discovered when both monsoons were considered. Moreover, the LST trends also changed according to the land cover types over the study period


Author(s):  
Ondřej Skoupý ◽  
David Procházka

Land cover change analysis is one of the most important tools for landscape management purposes, as it enables exploring of long-term natural processes especially in contrast with anthropogenic factors. Such analysis is always dependent on quality of available data. Due to long tradition of map making and quality and accuracy of preserved historical cartographic data in the Czech Republic it is possible to perform an effective land use change analysis using maps dating even back to early nineteenth century. Clearly, because map making methodology has evolved since then, the primary problem of land cover change analysis are different sources and thus different formats of analyzed data which need to be integrated, both spatially and contextually, into one coherent data set. One of the most difficult problems is caused by the fact that due to different map acquisition methodologies the maps are loaded with various errors originating from measurement, map drawing, storage, digitalization and finally georeferencing and possible vectorization. This means that some apparent changes may be for example caused by different methodology and accuracy of mapping a landscape feature that has not actually changed its shape and spatial position through the time. This work deals with spatial integration of data, namely identifying corresponding lines in map layers from different epochs and adjusting the borders plotted in the less accurate map to spatially correspond to the more accurate map. For such a purpose, a special program had to be created. It basically follows the work by Malach et al., 2009 who introduced their Layer Integrator. This work however presents a significantly different approach to creating an integration tool.


2020 ◽  
Vol 110 (1) ◽  
pp. 29-38
Author(s):  
Yahaya A. Aliyu ◽  
Terwase T. Youngu ◽  
Aliyu Z. Abubakar ◽  
Adamu Bala ◽  
Christianah I. Jesulowo

AbstractFor several decades, Nigerian cities have been experiencing a decline in their biodiversity resulting from rapid land use land cover (LULC) changes. Anticipating short/long-term consequences, this study hypothesised the effects of LULC variables in Akure, a developing tropical rainforest city in south-west Nigeria. A differentiated trend of urban LULC was determined over a period covering 1999–2019. The study showed the net change for bare land, built-up area, cultivated land, forest cover and grassland over the two decades to be −292.68 km2, +325.79 km2, +88.65 km2, +8.62 km2 and −131.38 km2, respectively. With a projected population increase of about 46.85%, the study identified that the built-up land cover increased from 1.98% to 48.61%. The change detection analysis revealed an upsurge in built area class. The expansion indicated a significant inverse correlation with the bare land class (50.97% to 8.66%) and grassland class (36.33% to 17.94%) over the study period. The study observed that the land consumption rate (in hectares) steadily increased by 0.00505, 0.00362 and 0.0687, in the year 1999, 2009 and 2019, respectively. This rate of increase is higher than studies conducted in more populated cities. The Cellular Automata (CA) Markovian analysis predicted a 37.92% growth of the study area will be the built-up area in the next two decades (2039). The 20-year prediction for Akure built-up area is within range when compared to CA Markov prediction for other cities across the globe. The findings of this study will guide future planning for rational LULC evaluation.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4319 ◽  
Author(s):  
Hongsheng Zhang ◽  
Ting Wang ◽  
Yuhan Zhang ◽  
Yiru Dai ◽  
Jiangjie Jia ◽  
...  

Short-term characteristics of urban land cover change have been observed and reported from satellite images, although urban landscapes are mainly influenced by anthropogenic factors. These short-term changes in urban areas are caused by rapid urbanization, seasonal climate changes, and phenological ecological changes. Quantifying and understanding these short-term characteristics of changes in various land cover types is important for numerous urban studies, such as urbanization assessments and management. Many previous studies mainly investigated one study area with insufficient datasets. To more reliably and confidently investigate temporal variation patterns, this study employed Fourier series to quantify the seasonal changes in different urban land cover types using all available Landsat images over four different cities, Melbourne, Sao Paulo, Hamburg, and Chicago, within a five-year period (2011–2015). The overall accuracy was greater than 86% and the kappa coefficient was greater than 0.80. The R-squared value was greater than 0.80 and the root mean square error was less than 7.2% for each city. The results indicated that (1) the changing periods for water classes were generally from half a year to one and a half years in different areas; and, (2) urban impervious surfaces changed over periods of approximately 700 days in Melbourne, Sao Paulo, and Hamburg, and a period of approximately 215 days in Chicago, which was actually caused by the unavoidable misclassification from confusions between various land cover types using satellite data. Finally, the uncertainties of these quantification results were analyzed and discussed. These short-term characteristics provided important information for the monitoring and assessment of urban areas using satellite remote sensing technology.


2018 ◽  
Vol 38 (1) ◽  
Author(s):  
李隽永 LI Juanyong ◽  
窦晓琳 DOU Xiaolin ◽  
胡印红 HU Yinhong ◽  
甘德欣 GAN Dexin ◽  
李锋 LI Feng

Land ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 300 ◽  
Author(s):  
Kwasi Anarfi ◽  
Ross A. Hill ◽  
Chris Shiel

Ghana is urbanising rapidly, and over half of the country’s population have lived in urban areas since 2010. Although research has proliferated to explore Ghana’s urbanisation, there is a dearth of research that holistically explores the wider sustainability implications of urbanisation, offers comparative perspectives in the context of large and smaller urban areas, and provides a perspective of local level urbanisation in the context of resource extraction (mining). This study comparatively assesses two urban areas in Ghana (Kumasi and Obuasi), by conducting a spatio-temporal analysis of land cover change through remote sensing and by analysing demographic change through a synthesis of published population data, in order to highlight the sustainability implications of urbanisation. The results show that urbanisation has been rapid, and has resulted in changes in land cover and demography in Kumasi and Obuasi. The sustainability implications of urbanisation are identified to include limited economic opportunities, socio-spatial segregation, and destruction of natural vegetation. The evidence in this study provides insights into urbanisation in Ghana, and suggests that the positive sustainability impacts of urbanisation may be eroded by how factors such as market forces and land tenure interact at the local level.


2020 ◽  
Vol 12 (8) ◽  
pp. 3331
Author(s):  
József Lennert ◽  
Jenő Zsolt Farkas ◽  
András Donát Kovács ◽  
András Molnár ◽  
Rita Módos ◽  
...  

The loss of farmland to urban use in peri-urban areas is a global phenomenon. Urban sprawl generates a decline in the availability of productive agricultural land around cities, causing versatile conflicts between nature and society and threatening the sustainability of urban agglomerations. This study aimed to uncover the spatial pattern of long-term (80 years) land cover changes in the functional urban area of Budapest, with special attention to the conversion of agricultural land. The paper is based on a unique methodology utilizing various data sources such as military-surveyed topographic maps from the 1950s, the CLC 90 from 1990, and the Urban Atlas from 2012. In addition, the multilayer perceptron (MLP) method was used to model land cover changes through 2040. The research findings showed that land conversion and the shrinkage of productive agricultural land around Budapest significantly intensified after the collapse of communism. The conversion of arable land to artificial surfaces increased, and by now, the traditional metropolitan food supply area around Budapest has nearly disappeared. The extent of forests and grasslands increased in the postsocialist period due to national afforestation programs and the demand of new suburbanites for recreational space. Urban sprawl and the conversion of agricultural land should be an essential issue during the upcoming E.U. Common Agricultural Policy (CAP) reforms.


Sign in / Sign up

Export Citation Format

Share Document