scholarly journals The Applicability of an Inverse Schlumberger Array for Near-Surface Targets in Shallow Water Environments

2020 ◽  
Vol 12 (13) ◽  
pp. 2132
Author(s):  
Annika Fediuk ◽  
Dennis Wilken ◽  
Martin Thorwart ◽  
Tina Wunderlich ◽  
Ercan Erkul ◽  
...  

We investigate the applicability of offshore geoelectrical profiling in the littoral zone, e.g., for archaeological prospection, sediment classification and investigations on coastal ground water upwelling. We performed field measurements with a 20 m long multi-electrode streamer in inverse Schlumberger configuration, which we used to statistically evaluate measurement uncertainty and the reproducibility of offshore electric resistivity tomography. We compared floating and submerged electrodes, as well as stationary and towed measurements. We found out that apparent resistivity values can be determined with an accuracy of 1% to 5% (1σ) depending on the measurement setup under field conditions. Based on these values and focusing on typical meter-scale targets, we used synthetic resistivity models to theoretically investigate the tomographic resolution and depth penetration achievable near-beach underneath a column of brackish water of about 1 m depth. From the analysis, we conclude that offshore geoelectric sounding allows the mapping of archaeological stone settings. The material differentiation of low-porosity rock masses < 15% is critical. Submerged wooden objects show a significant resistivity contrast to sand and rocks. Distinguishing brine-saturated sandy sediments from cohesive silty-clayey sediments is difficult due to their equal or reversed resistivity contrasts. Submarine freshwater discharges in sandy aquifers can be localized well, though difficulties may occur if the seafloor encounters massive low-porosity rock masses. As to the measurement setups, submerged and floating electrodes differ in their spatial resolution. Whereas stone settings of 0.5 to 1 m can still be located with submerged electrodes within the uppermost 4 m underneath the seafloor, they have to be >2 m if floating electrodes are used. Therefore, we recommend using submerged electrodes, especially in archaeological prospection. Littoral geological and hydrogeological mapping is also feasible with floating electrodes in a more time-saving way.

2021 ◽  
Author(s):  
Riccardo Scandroglio ◽  
Till Rehm ◽  
Jonas K. Limbrock ◽  
Andreas Kemna ◽  
Markus Heinze ◽  
...  

&lt;p&gt;The warming of alpine bedrock permafrost in the last three decades and consequent reduction of frozen areas has been well documented. Its consequences like slope stability reduction put humans and infrastructures at high risk. 2020 in particular was the warmest year on record at 3000m a.s.l. embedded in the warmest decade.&lt;/p&gt;&lt;p&gt;Recently, the development of electrical resistivity tomography (ERT) as standard technique for quantitative permafrost investigation allows extended monitoring of this hazard even allowing including quantitative 4D monitoring strategies (Scandroglio et al., in review). Nevertheless thermo-hydro-mechanical dynamics of steep bedrock slopes cannot be totally explained by a single measurement technique and therefore multi-approach setups are necessary in the field to record external forcing and improve the deciphering of internal responses.&lt;/p&gt;&lt;p&gt;The Zugspitze Kammstollen is a 850m long tunnel located between 2660 and 2780m a.s.l., a few decameters under the mountain ridge. First ERT monitoring was conducted in 2007 (Krautblatter et al., 2010)&amp;#160;and has been followed by more than one decade of intensive field work. This has led to the collection of a unique multi-approach data set of still unpublished data. Continuous logging of environmental parameters such as rock/air temperatures and water infiltration through joints as well as a dedicated thermal model (Schr&amp;#246;der and Krautblatter, in review)&amp;#160;provide important additional knowledge on bedrock internal dynamics. Summer ERT and seismic refraction tomography surveys with manual and automated joints&amp;#8217; displacement measurements on the ridge offer information on external controls, complemented by three weather stations and a 44m long borehole within 1km from the tunnel.&lt;/p&gt;&lt;p&gt;Year-round access to the area enables uninterrupted monitoring and maintenance of instruments for reliable data collection. &amp;#8220;Precisely controlled natural conditions&amp;#8221;, restricted access for researchers only and logistical support by Environmental Research Station Schneefernerhaus, make this tunnel particularly attractive for developing benchmark experiments. Some examples are the design of induced polarization monitoring, the analysis of tunnel spring water for isotopes investigation, and the multi-annual mass monitoring by means of relative gravimetry.&lt;/p&gt;&lt;p&gt;Here, we present the recently modernized layout of the outdoor laboratory with the latest monitoring results, opening a discussion on further possible approaches of this extensive multi-approach data set, aiming at understanding not only permafrost thermal evolution but also the connected thermo-hydro-mechanical processes.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Krautblatter, M. et al.&amp;#160;(2010) &amp;#8216;Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps)&amp;#8217;, Journal of Geophysical Research: Earth Surface, 115(2), pp. 1&amp;#8211;15. doi: 10.1029/2008JF001209.&lt;/p&gt;&lt;p&gt;Scandroglio, R. et al.&amp;#160;(in review) &amp;#8216;4D-Quantification of alpine permafrost degradation in steep rock walls using a laboratory-calibrated ERT approach (in review)&amp;#8217;, Near Surface Geophysics.&lt;/p&gt;&lt;p&gt;Schr&amp;#246;der, T. and Krautblatter, M. (in review) &amp;#8216;A high-resolution multi-phase thermo-geophysical model to verify long-term electrical resistivity tomography monitoring in alpine permafrost rock walls (Zugspitze, German/Austrian Alps) (submitted)&amp;#8217;, Earth Surface Processes and Landforms.&lt;/p&gt;


2015 ◽  
Vol 45 (4) ◽  
pp. 943-965 ◽  
Author(s):  
Peter Sutherland ◽  
W. Kendall Melville

AbstractWave breaking removes energy from the surface wave field and injects it into the upper ocean, where it is dissipated by viscosity. This paper presents an investigation of turbulent kinetic energy (TKE) dissipation beneath breaking waves. Wind, wave, and turbulence data were collected in the North Pacific Ocean aboard R/P FLIP, during the ONR-sponsored High Resolution Air-Sea Interaction (HiRes) and Radiance in a Dynamic Ocean (RaDyO) experiments. A new method for measuring TKE dissipation at the sea surface was combined with subsurface measurements to allow estimation of TKE dissipation over the entire wave-affected surface layer. Near the surface, dissipation decayed with depth as z−1, and below approximately one significant wave height, it decayed more quickly, approaching z−2. High levels of TKE dissipation very near the sea surface were consistent with the large fraction of wave energy dissipation attributed to non-air-entraining microbreakers. Comparison of measured profiles with large-eddy simulation results in the literature suggests that dissipation is concentrated closer to the surface than previously expected, largely because the simulations did not resolve microbreaking. Total integrated dissipation in the water column agreed well with dissipation by breaking for young waves, (where cm is the mean wave frequency and is the atmospheric friction velocity), implying that breaking was the dominant source of turbulence in those conditions. The results of these extensive measurements of near-surface dissipation over three field experiments are discussed in the context of observations and ocean boundary layer modeling efforts by other groups.


2017 ◽  
Vol 43 (4) ◽  
pp. 1962
Author(s):  
G. Vargemezis ◽  
P. Tsourlos ◽  
I. Mertzanides

The most common geophysical method widely used in hydrogeological surveys concerning deep investigations (150-300m of depth) is the resistivity method and particularly the Vertical Electric Sounding (VES) using the Schlumberger array. VES interpretations assume 1D geoelectrical structure yet it is obvious that such an interpretation assumption is not valid in many cases where 2D and 3D geological features exist. In such cases the application of geoelectrical techniques which can provide both vertical and lateral information concerning the resistivity variations is required. Techniques such as the electrical resistivity tomography, mostly used for the 2D and 3D geoelectrical mapping of near surface applications can be adapted to be used for larger investigation depths provided that modified equipment (viz. cables) is used. In the present paper, the application of deep electrical resistivity tomography (ERT) techniques is applied. ERT array of 21 electrodes, at a distance of 50 meters between them (total length 1000 meters) has been used in several studied areas located in the prefecture of Kavala (North Greece). In several cases near surface structure has been compared with VLF data. The aim of the survey was to study in detail the geological-hydrogeological structure the area of interest in order to suggest the best location for the construction of hydrowells with the most promising results. The 2D images of the geological structure down to the depth of at least 200 meters allowed the better understanding of the behaviour of layered geological formations, since in several cases resistivity values have been calibrated with data from pre-existing boreholes.


2019 ◽  
Vol 49 (6) ◽  
pp. 1593-1618 ◽  
Author(s):  
Roy Barkan ◽  
M. Jeroen Molemaker ◽  
Kaushik Srinivasan ◽  
James C. McWilliams ◽  
Eric A. D’Asaro

AbstractOceanic surface submesoscale currents are characterized by anisotropic fronts and filaments with widths from 100 m to a few kilometers; an O(1) Rossby number; and large magnitudes of lateral buoyancy and velocity gradients, cyclonic vorticity, and convergence. We derive an asymptotic model of submeoscale frontogenesis—the rate of sharpening of submesoscale gradients—and show that in contrast with “classical” deformation frontogenesis, the near-surface convergent motions, which are associated with the ageostrophic secondary circulation, determine the gradient sharpening rates. Analytical solutions for the inviscid Lagrangian evolution of the gradient fields in the proposed asymptotic regime are provided, and emphasize the importance of ageostrophic motions in governing frontal evolution. These analytical solutions are further used to derive a scaling relation for the vertical buoyancy fluxes that accompany the gradient sharpening process. Realistic numerical simulations and drifter observations in the northern Gulf of Mexico during winter confirm the applicability of the asymptotic model to strong frontogenesis. Careful analysis of the numerical simulations and field measurements demonstrates that a subtle balance between boundary layer turbulence, pressure, and Coriolis effects (e.g., turbulent thermal wind; Gula et al. 2014) leads to the generation of the surface convergent motions that drive frontogenesis in this region. Because the asymptotic model makes no assumptions about the physical mechanisms that initiate the convergent frontogenetic motions, it is generic for submesoscale frontogenesis of O(1) Rossby number flows.


2009 ◽  
Vol 10 (1) ◽  
pp. 320-329 ◽  
Author(s):  
Kelly Elder ◽  
Don Cline ◽  
Glen E. Liston ◽  
Richard Armstrong

Abstract A field measurement program was undertaken as part NASA’s Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). Measurements included snow depth, density, temperature, grain type and size, surface wetness, surface roughness, and canopy cover. Soil moisture measurements were made in the near-surface layer in snow pits. Measurements were taken in the Fraser valley, North Park, and Rabbit Ears Pass areas of Colorado. Sites were chosen to gain a wide representation of snowpack types and physiographies typical of seasonally snow-covered regions of the world. The data have been collected with rigorous protocol to ensure consistency and quality, and they have undergone several levels of quality assurance to produce a high-quality spatial dataset for continued cold lands hydrological research. The dataset is archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.


2002 ◽  
Vol 42 (6) ◽  
pp. 665 ◽  
Author(s):  
H. A. Cleugh

While there has been considerable research into airflow around windbreaks, the interaction of this airflow with the exchanges of heat and water vapour has received far less attention. Yet, the effects of windbreaks on microclimates, water use and agricultural productivity depend, in part, on this interaction. A field and wind tunnel experimental program was conducted to quantify the effects of windbreaks on microclimates and evaporation fluxes. This paper describes the field measurements, which were conducted over a 6-week period at a tree windbreak site located in undulating terrain in south-east Australia. The expected features of airflow around porous windbreaks were observed despite the less than ideal nature of the site. As predicted from theory, the air temperature and humidity were elevated, by day, in the quiet zone and the location of the peak increase in temperature and humidity coincided with the location of the minimum wind speed. However, this increase in temperature and humidity was small in size and restricted to the zone within 10 windbreak heights (H) of the windbreak. This pattern contrasts with that for the near surface wind speeds, which were reduced by up to 80% in a sheltered zone that extended from 5 H upwind to over 25 H downwind of the windbreak. Similar differences were found between the turbulent scalar (heat, water vapour) and velocity terms. While both are reduced in the quiet zone, the turbulent scalar terms near the surface were substantially enhanced at the location where the wake zone begins. Here the mean wind speed is reduced by 50% and the turbulent velocity terms return to their upwind values. Wind speed reductions varied linearly with [cos (90 – α)], where α is the incident angle of the wind, for sites located 6 H downwind. This means that the spatial pattern of wind speed reduction applies to all wind directions, provided that distance downwind is expressed in terms of streamwise distance. However, shelter in the near-break region is slightly increased as the wind blows more obliquely towards the windbreak. The atmospheric demand in the quiet zone was reduced when the humidity of the upwind air was low. In such conditions, windbreaks can 'protect' growing crops from the impact of dry air with high atmospheric demand. The corollary is that in humid conditions, the atmospheric demand in the quiet zone can be increased as a result of shelter.


2019 ◽  
Vol 265 ◽  
pp. 03005
Author(s):  
Dmitriy Gorbach ◽  
Valeriya Yakimenko ◽  
Olga Konovalova

The paper reviews methods of engineering geophysics which can be applied to sections of railway tracks. The method of electrical resistivity tomography is used to study the properties of the geological situation under an engineering structure. In the course of practical work, two-dimensional geoelectric sections were obtained. Interpretation of the sections allowed to understand the structure of the near-surface zone.


2019 ◽  
Vol 11 (4) ◽  
pp. 373 ◽  
Author(s):  
Daniela Vanella ◽  
Juan Ramírez-Cuesta ◽  
Diego Intrigliolo ◽  
Simona Consoli

An adjusted satellite-based model was proposed with the aim of improving spatially distributed evapotranspiration (ET) estimates under plant water stress conditions. Remote sensing data and near surface geophysics information, using electrical resistivity tomography (ERT), were used in a revised version of the original dual crop coefficient (Kc) FAO-56 approach. Sentinel 2-A imagery were used to compute vegetation indices (VIs) required for spatially estimating ET. The potentiality of the ERT technique was exploited for tracking the soil wetting distribution patterns during and after irrigation phases. The ERT-derived information helped to accurately estimate the wet exposed fraction (few) and therefore the water evaporated from the soil surface into the dual Kc FAO-56 approach. Results, validated by site-specific ET measurements (ETEC) obtained using the eddy covariance (EC) technique, showed that ERT-adjusted ET estimates (ETERT) were considerably reduced (15%) when compared with the original dual Kc FAO-56 approach (ETFAO), soil evaporation overestimation being the main reason for these discrepancies. Nevertheless, ETFAO and ETERT showed overestimations of 64% and 40% compared to ETEC. This is because both approaches determine ET under standard conditions without water limitation, whereas EC is able to determine ET even under soil water deficit conditions. From the comparison between ETEC and ETERT, the water stress coefficient was experimentally derived, reaching a mean value for the irrigation season of 0.74. The obtained results highlight how new technologies for soil water status monitoring can be incorporated for improving ET estimations, particularly under drip irrigation conditions.


2020 ◽  
Author(s):  
Lincheng Jiang ◽  
Gang Tian ◽  
Bangbing Wang ◽  
Amr Abd El-Raouf

&lt;p&gt;In recent decades, geoelectrical methods have played a very important role in near-surface investigation. The most widely used of these methods is electrical resistivity tomography (ERT). Regardless of the forward and inversion algorithms used, the original data collected from a survey is the most important factor for quality of the resulted model. However, 3D electrical resistivity survey design continues to be based on data sets recorded using one or more of the standard electrode arrays. There is a recognized need for the 3D survey design to get better resolution using fewer data. Choosing suitable data from the comprehensive data set is a great approach. By reasonable selecting, better resolution can be obtained with fewer electrodes and measurements than conventional arrays. Previous research has demonstrated that the optimized survey design using the 'Compare R' method can give a nice performance.&lt;/p&gt;&lt;p&gt;This paper adds target-oriented selection and modified the original 'Compare R' method. The survey design should be focused on specific target areas, which need a priori information about the subsurface properties. We select electrodes and configurations as the target set by the comprehensive set firstly which meets the requirements of the target area. The number of measurements and electrodes is much less than the comprehensive set and the model resolution matrix takes less time to calculate. At the next step for rank, we calculate the sensitivity matrix of the target set only once and then calculate the contribution degree of each measurement separately from it. The time of iterative calculation of the resolution matrix when measurements set changing is less than the original method.&lt;/p&gt;&lt;p&gt;The traditional method of evaluating RMS is not appropriate for comparing the quality of collected data by different survey designs. SSIM (structural similarity index) gives more reliable measures of image similarity better than the RMS. The curves of SSIM values in three dimensions and the average SSIM are given as quantitative comparisons. Besides, the frequency of electrodes utilized given to guides on selecting the highest used electrodes. Finally, the curves of the average relative resolution S and the number of electrodes as the number of measurements increase are given, which proves the method works effectively.&lt;/p&gt;&lt;p&gt;The results show the significance of using target-oriented optimized survey design, as it selects fewer electrodes and arrays than the original CR method. Also, it produces better resolution than conventional arrays and takes less calculation time. 3D SSIM, frequency of electrodes used, the relationship between average relative resolution, number of electrodes and number of measurements, these quantitative comparison methods can effectively evaluate the data collected in various survey designs.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document