scholarly journals Methods of Rapid Quality Assessment for National-Scale Land Surface Change Monitoring

2020 ◽  
Vol 12 (16) ◽  
pp. 2524
Author(s):  
Qiang Zhou ◽  
Christopher Barber ◽  
George Xian

Providing rapid access to land surface change data and information is a goal of the U.S. Geological Survey. Through the Land Change Monitoring, Assessment, and Projection (LCMAP) initiative, we have initiated a monitoring capability that involves generating a suite of 10 annual land cover and land surface change datasets across the United States at a 30-m spatial resolution. During the LCMAP automated production, on a tile-by-tile basis, erroneous data can occasionally be generated due to hardware or software failure. While crucial to assure the quality of the data, rapid evaluation of results at the pixel level during production is a substantial challenge because of the massive data volumes. Traditionally, product quality relies on the validation after production, which is inefficient to reproduce the whole product when an error occurs. This paper presents a method for automatically evaluating LCMAP results during the production phase based on 14 indices to quickly find and flag erroneous tiles in the LCMAP products. The methods involved two types of comparisons: comparing LCMAP values across the temporal record to measure internal consistency and calculating the agreement with multiple intervals of the National Land Cover Database (NLCD) data to measure the consistency with existing products. We developed indices on a tile-by-tile basis in order to quickly find and flag potential erroneous tiles by comparing with surrounding tiles using local outlier factor analysis. The analysis integrates all indices into a local outlier score (LOS) to detect erroneous tiles that are distinct from neighboring tiles. Our analysis showed that the methods were sensitive to partially erroneous tiles in the simulated data with a LOS higher than 2. The rapid quality assessment methods also successfully identified erroneous tiles during the LCMAP production, in which land surface change results were not properly saved to the products. The LOS map and indices for rapid quality assessment also point to directions for further investigations. A map of all LOS values by tile for the published LCMAP shows all LOS values are below 2. We also investigated tiles with high LOS to ensure the distinction with neighboring tiles was reasonable. An index in this study shows the overall agreement between LCMAP and NLCD on a tile basis is above 71.5% and has an average at 89.1% across the 422 tiles in the conterminous United States. The workflow is suitable for other studies with a large volume of image products.

2021 ◽  
Author(s):  
George Xian ◽  
Kelcy Smith ◽  
Danika Wellington ◽  
Josephine Horton ◽  
Qiang Zhou ◽  
...  

Abstract. The increasing availability of high-quality remote sensing data and advanced technologies have spurred land cover mapping to characterize land change from local to global scales. However, most land change datasets either span multiple decades at a local scale or cover limited time over a larger geographic extent. Here, we present a new land cover and land surface change dataset created by the Land Change Monitoring, Assessment, and Projection (LCMAP) program over the conterminous United States (CONUS). The LCMAP land cover change dataset consists of annual land cover and land cover change products over the period 1985–2017 at 30-meter resolution using Landsat and other ancillary data via the Continuous Change Detection and Classification (CCDC) algorithm. In this paper, we describe our novel approach to implement the CCDC algorithm to produce the LCMAP product suite composed of five land cover and five land surface change related products. The LCMAP land cover products were validated using a collection of ~25,000 reference samples collected independently across CONUS. The overall agreement for all years of the LCMAP primary land cover product reached 82.5 %. The LCMAP products are produced through the LCMAP Information Warehouse and Data Store (IW+DS) and Shared Mesos Cluster systems that can process, store, and deliver all datasets for public access. To our knowledge, this is the first set of published 30 m annual land cover and land cover change datasets that span from the 1980s to the present for the United States. The LCMAP product suite provides useful information for land resource management and facilitates studies to improve the understanding of terrestrial ecosystems and the complex dynamics of the Earth system. The LCMAP system could be implemented to produce global land change products in the future.


2020 ◽  
Vol 12 (4) ◽  
pp. 699 ◽  
Author(s):  
Qiang Zhou ◽  
Heather Tollerud ◽  
Christopher Barber ◽  
Kelcy Smith ◽  
Daniel Zelenak

The U.S. Geological Survey’s Land Change Monitoring, Assessment, and Projection (LCMAP) initiative involves detecting changes in land cover, use, and condition with the goal of producing land change information to improve the understanding of the Earth system and provide insights on the impacts of land surface change on society. The change detection method ingests all available high-quality data from the Landsat archive in a time series approach to identify the timing and location of land surface change. Annual thematic land cover maps are then produced by classifying time series models. In this paper, we describe the optimization of the classification method used to derive the thematic land cover product. We investigated the influences of auxiliary data, sample size, and training from different sources such as the U.S. Geological Survey’s Land Cover Trends project and National Land Cover Database (NLCD 2001 and NLCD 2011). The results were evaluated and validated based on independent data from the training dataset. We found that refining the auxiliary data effectively reduced artifacts in the thematic land cover map that are related to data availability. We improved the classification accuracy and stability considerably by using a total of 20 million training pixels with a minimum of 600,000 and a maximum of 8 million training pixels per class within geographic windows consisting of nine Analysis Ready Data tiles (450 by 450 km2). Comparisons revealed that the NLCD 2001 training data delivered the best classification accuracy. Compared to the original LCMAP classification strategy used for early evaluation (e.g., Trends training data, 20,000 samples), the optimized classification strategy improved the annual land cover map accuracy by an average of 10%.


2006 ◽  
Vol 7 (5) ◽  
pp. 1043-1060 ◽  
Author(s):  
Ismail Yucel

Abstract This study implements a new land-cover classification and surface albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and investigates its effects on regional near-surface atmospheric state variables as well as the planetary boundary layer evolution for two dissimilar U.S. regions. Surface parameter datasets are determined by translating the 17-category MODIS classes into the U.S. Geological Survey (USGS) and Simple Biosphere (SiB) categories available for use in MM5. Changes in land-cover specification or associated parameters affected surface wind, temperature, and humidity fields, which, in turn, resulted in perceivable alterations in the evolving structure of the planetary boundary layer. Inclusion of the MODIS albedo into the simulations enhanced these impacts further. Area-averaged comparisons with ground measurements showed remarkable improvements in near-surface temperature and humidity at both study areas when MM5 is initialized with MODIS land-cover and albedo data. Influence of both MODIS surface datasets is more significant at a semiarid location in the southwest of the United States than it is in a humid location in the mid-Atlantic region. Intense summertime surface heating at the semiarid location creates favorable conditions for strong land surface forcing. For example, when the simulations include MODIS land cover and MODIS albedo, respective error reduction rates were 6% and 11% in temperature and 2% and 2.5% in humidity in the southwest of the United States. Error reduction rates in near-surface atmospheric fields are considered important in the design of mesoscale weather simulations.


2017 ◽  
Vol 78 (4) ◽  
pp. 421-432 ◽  
Author(s):  
Carine M. Laporte ◽  
Crisanta Cruz-Espindola ◽  
Kamoltip Thungrat ◽  
Anthea E. Schick ◽  
Thomas P. Lewis ◽  
...  

2003 ◽  
Vol 13 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Zhiqiang Gao ◽  
Jiyuan Liu ◽  
Xiangzheng Deng

2017 ◽  
Author(s):  
Matthew C. Wozniak ◽  
Allison Steiner

Abstract. We develop a prognostic model of Pollen Emissions for Climate Models (PECM) for use within regional and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus), evergreen needleleaf trees (Cupressaceae, Pinaceae), grasses (Poaceae; C3, C4), and ragweed (Ambrosia). This regression model explains as much as 57 % of the variance in pollen phenological dates, and it is used to create a climate-flexible phenology that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is evaluated in a regional climate model (RegCM4) over the continental United States by prescribing an emission potential from PECM and transporting pollen as aerosol tracers. We evaluate two different pollen emissions scenarios in the model: (1) using a taxa-specific land cover database, phenology and emission potential, and (2) a PFT-based land cover, phenology and emission potential. The resulting surface concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions. Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, although the performance of the simulations in any subregion is strongly related to the land cover representation and the number of observation sites used to create the empirical phenological relationship. The taxa-based model provides a better representation of the phenology of tree-based pollen counts than the PFT-based model, however we note that the PFT-based version provides a useful and climate-flexible emissions model for the general representation of the pollen phenology over the United States.


Sign in / Sign up

Export Citation Format

Share Document