scholarly journals Extended Geometry and Probability Model for GNSS+ Constellation Performance Evaluation

2020 ◽  
Vol 12 (16) ◽  
pp. 2560
Author(s):  
Lingdong Meng ◽  
Jiexian Wang ◽  
Junping Chen ◽  
Bin Wang ◽  
Yize Zhang

We proposed an extended geometry and probability model (EGAPM) to analyze the performance of various kinds of (Global Navigation Satellite System) GNSS+ constellation design scenarios in terms of satellite visibility and dilution of precision (DOP) et al. on global and regional scales. Different from conventional methods, requiring real or simulated satellite ephemerides, this new model only uses some basic parameters of one satellite constellation. Verified by the reference values derived from precise satellite ephemerides, the accuracy of visible satellite visibility estimation using EGAPM gets an accuracy better than 0.11 on average. Applying the EGAPM to evaluate the geometry distribution quality of the hybrid GNSS+ constellation, where highly eccentric orbits (HEO), quasi-zenith orbit (QZO), inclined geosynchronous orbit (IGSO), geostationary earth orbit (GEO), medium earth orbit (MEO), and also low earth orbit (LEO) satellites included, we analyze the overall performance quantities of different constellation configurations. Results show that QZO satellites perform slightly better in the Northern Hemisphere than IGSO satellites. HEO satellites can significantly improve constellation geometry distribution quality in the high latitude regions. With 5 HEO satellites included in the third-generation BeiDou navigation satellite system (BDS-3), the average VDOP (vertical DOP) of the 30° N–90° N region can be decreased by 16.65%, meanwhile satellite visibility can be increased by 38.76%. What is more, the inclusion of the polar LEO constellation can significantly improve GNSS service performance. When including with 288 LEO satellites, the overall DOPs (GDOP (geometric DOP), HDOP (horizontal DOP), PDOP (position DOP), TDOP (time DOP), and VDOP) are decreased by about 40%, and the satellite visibility can be increased by 183.99% relative to the Global Positioning System (GPS) constellation.

2019 ◽  
Vol 11 (19) ◽  
pp. 2327 ◽  
Author(s):  
Changjiang Hu ◽  
Craig Benson ◽  
Hyuk Park ◽  
Adriano Camps ◽  
Li Qiao ◽  
...  

Global Navigation Satellite System (GNSS) reflected signals can be used to remotely sense the Earth’s surface, known as GNSS reflectometry (GNSS-R). The GNSS-R technique has been applied to numerous areas, such as the retrieval of wind speed, and the detection of Earth surface objects. This work proposes a new application of GNSS-R, namely to detect objects above the Earth’s surface, such as low Earth orbit (LEO) satellites. To discuss its feasibility, 14 delay Doppler maps (DDMs) are first presented which contain unusually bright reflected signals as delays shorter than the specular reflection point over the Earth’s surface. Then, seven possible causes of these anomalies are analysed, reaching the conclusion that the anomalies are likely due to the signals being reflected from objects above the Earth’s surface. Next, the positions of the objects are calculated using the delay and Doppler information, and an appropriate geometry assumption. After that, suspect satellite objects are searched in the satellite database from Union of Concerned Scientists (UCS). Finally, three objects have been found to match the delay and Doppler conditions. In the absence of other reasons for these anomalies, GNSS-R could potentially be used to detect some objects above the Earth’s surface.


2021 ◽  
Vol 13 (18) ◽  
pp. 3698
Author(s):  
Haomeng Cui ◽  
Shoujian Zhang

Positioning accuracy is affected by the combined effect of user range errors and the geometric distribution of satellites. Dilution of precision (DOP) is defined as the geometric strength of visible satellites. DOP is calculated based on the satellite broadcast or precise ephemerides. However, because the modernization program of next-generation navigation satellite systems is still under construction, there is a lack of real ephemerides to assess the performance of next-generation constellations. Without requiring real ephemerides, we describe a method to estimate satellite visibility and DOP. The improvement of four next-generation Global Navigation Satellite Systems (four-GNSS-NG), compared to the navigation constellations that are currently in operation (four-GNSS), is statistically analyzed. The augmentation of the full constellation the Quasi-Zenith Satellite System (7-QZSS) and the Navigation with Indian Constellation (11-NavIC) for regional users and the low Earth orbit (LEO) constellation enhancing four-GNSS performance are also analyzed based on this method. The results indicate that the average number visible satellites of the four-GNSS-NG will reach 44.86, and the average geometry DOP (GDOP) will be 1.19, which is an improvement of 17.3% and 7.8%, respectively. With the augmentation of the 120-satellite mixed-orbit LEO constellation, the multi-GNSS visible satellites will increase by 5 to 8 at all latitudes, while the GDOP will be reduced by 6.2% on average. Adding 7-QZSS and 11-NavIC to the four-GNSS-NG, 37.51 to 71.58 satellites are available on global scales. The average position DOP (PDOP), horizontal DOP (HDOP), vertical DOP (VDOP), and time DOP (TDOP) are reduced to 0.82, 0.46, 0.67 and 0.44, respectively.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 198 ◽  
Author(s):  
Mudan Su ◽  
Xing Su ◽  
Qile Zhao ◽  
Jingnan Liu

Currently, the Global Navigation Satellite System (GNSS) mainly uses the satellites in Medium Earth Orbit (MEO) to provide position, navigation, and timing (PNT) service. The weak navigation signals limit its usage in deep attenuation environments, and make it easy to interference and counterfeit by jammers or spoofers. Moreover, being far away to the Earth results in relatively slow motion of the satellites in the sky and geometric change, making long time needed for achieved centimeter positioning accuracy. By using the satellites in Lower Earth Orbit (LEO) as the navigation satellites, these disadvantages can be addressed. In this contribution, the advantages of navigation from LEO constellation has been investigated and analyzed theoretically. The space segment of global Chinese BeiDou Navigation Satellite System consisting of three GEO, three IGSO, and 24 MEO satellites has been simulated with a LEO constellation with 120 satellites in 10 orbit planes with inclination of 55 degrees in a nearly circular orbit (eccentricity about 0.000001) at an approximate altitude of 975 km. With simulated data, the performance of LEO constellation to augment the global Chinese BeiDou Navigation Satellite System (BeiDou-3) has been assessed, as one of the example to show the promising of using LEO as navigation system. The results demonstrate that the satellite visibility and position dilution of precision have been significantly improved, particularly in mid-latitude region of Asia-Pacific region, once the LEO data were combined with BeiDou-3 for navigation. Most importantly, the convergence time for Precise Point Positioning (PPP) can be shorted from about 30 min to 1 min, which is essential and promising for real-time PPP application. Considering there are a plenty of commercial LEO communication constellation with hundreds or thousands of satellites, navigation from LEO will be an economic and promising way to change the heavily relay on GNSS systems.


2020 ◽  
Vol 12 (11) ◽  
pp. 1845
Author(s):  
Meiqian Guan ◽  
Tianhe Xu ◽  
Fan Gao ◽  
Wenfeng Nie ◽  
Honglei Yang

Low Earth orbit (LEO) satellites located at altitudes of 500 km~1500 km can carry much stronger signals and move faster than medium Earth orbit (MEO) satellites at about a 20,000 km altitude. Taking advantage of these features, LEO satellites promise to make contributions to navigation and positioning where global navigation satellite system (GNSS) signals are blocked as well as the rapid convergence of precise point positioning (PPP). In this paper, LEO-based optimal global navigation and augmentation constellations are designed by a non-dominated sorting genetic algorithm III (NSGA-III) and genetic algorithm (GA), respectively. Additionally, a LEO augmentation constellation with GNSS satellites included is designed using the NSGA-III. For global navigation constellations, the results demonstrate that the optimal constellations with a near-polar Walker configuration need 264, 240, 210, 210, 200, 190 and 180 satellites with altitudes of 900, 1000, 1100, 1200, 1300, 1400 and 1500 km, respectively. For global augmentation constellations at an altitude of 900 km, for instance, 72, 91, and 108 satellites are required in order to achieve a global average of four, five and six visible satellites for an elevation angle above 7 degrees with one Walker constellation. To achieve a more even coverage, a hybrid constellation with two Walker constellations is also presented. On this basis, the GDOPs (geometric dilution of precision) of the GNSS with and without an LEO constellation are compared. In addition, we prove that the computation efficiency of the constellation design can be considerably improved by using master–slave parallel computing.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Tao Shi ◽  
Xuebin Zhuang ◽  
Liwei Xie

AbstractThe autonomous navigation of the spacecrafts in High Elliptic Orbit (HEO), Geostationary Earth Orbit (GEO) and Geostationary Transfer Orbit (GTO) based on Global Navigation Satellite System (GNSS) are considered feasible in many studies. With the completion of BeiDou Navigation Satellite System with Global Coverage (BDS-3) in 2020, there are at least 130 satellites providing Position, Navigation, and Timing (PNT) services. In this paper, considering the latest CZ-5(Y3) launch scenario of Shijian-20 GEO spacecraft via Super-Synchronous Transfer Orbit (SSTO) in December 2019, the navigation performance based on the latest BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), Galileo Navigation Satellite System (Galileo) and GLObal NAvigation Satellite System (GLONASS) satellites in 2020 is evaluated, including the number of visible satellites, carrier to noise ratio, Doppler, and Position Dilution of Precision (PDOP). The simulation results show that the GEO/Inclined Geo-Synchronous Orbit (IGSO) navigation satellites of BDS-3 can effectively increase the number of visible satellites and improve the PDOP in the whole launch process of a typical GEO spacecraft, including SSTO and GEO, especially for the GEO spacecraft on the opposite side of Asia-Pacific region. The navigation performance of high orbit spacecrafts based on multi-GNSSs can be significantly improved by the employment of BDS-3. This provides a feasible solution for autonomous navigation of various high orbit spacecrafts, such as SSTO, MEO, GEO, and even Lunar Transfer Orbit (LTO) for the lunar exploration mission.


Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 280
Author(s):  
Farzan Farhangian ◽  
Hamza Benzerrouk ◽  
Rene Landry

With the emergence of numerous low Earth orbit (LEO) satellite constellations such as Iridium-Next, Globalstar, Orbcomm, Starlink, and OneWeb, the idea of considering their downlink signals as a source of pseudorange and pseudorange rate measurements has become incredibly attractive to the community. LEO satellites could be a reliable alternative for environments or situations in which the global navigation satellite system (GNSS) is blocked or inaccessible. In this article, we present a novel in-flight alignment method for a strapdown inertial navigation system (SINS) using Doppler shift measurements obtained from single or multi-constellation LEO satellites and a rotation technique applied on the inertial measurement unit (IMU). Firstly, a regular Doppler positioning algorithm based on the extended Kalman filter (EKF) calculates states of the receiver. This system is considered as a slave block. In parallel, a master INS estimates the position, velocity, and attitude of the system. Secondly, the linearized state space model of the INS errors is formulated. The alignment model accounts for obtaining the errors of the INS by a Kalman filter. The measurements of this system are the difference in the outputs from the master and slave systems. Thirdly, as the observability rank of the system is not sufficient for estimating all the parameters, a discrete dual-axis IMU rotation sequence was simulated. By increasing the observability rank of the system, all the states were estimated. Two experiments were performed with different overhead satellites and numbers of constellations: one for a ground vehicle and another for a small flight vehicle. Finally, the results showed a significant improvement compared to stand-alone INS and the regular Doppler positioning method. The error of the ground test reached around 26 m. This error for the flight test was demonstrated in different time intervals from the starting point of the trajectory. The proposed method showed a 180% accuracy improvement compared to the Doppler positioning method for up to 4.5 min after blocking the GNSS.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5439
Author(s):  
Johannes Rossouw van der Merwe ◽  
Alexander Rügamer ◽  
Wolfgang Felber

Spoofing of global navigation satellite system (GNSS) signals threatens positioning systems. A counter-method is to detect the presence of spoofed signals, followed by a warning to the user. In this paper, a multi-antenna snapshot receiver is presented to detect the presence of a spoofing attack. The spatial similarities of the array steering vectors are analyzed, and different metrics are used to establish possible detector functions. These include subset methods, Eigen-decomposition, and clustering algorithms. The results generated within controlled spoofing conditions show that a spoofed constellation of GNSS satellites can be successfully detected. The derived system-level detectors increase performance in comparison to pair-wise methods. A controlled test setup achieved perfect detection; however, in real-world cases, the performance would not be as ideal. Some detection metrics and features for blind spoofing detecting, with an array of antennas, are identified, which opens the field for future advanced multi-detector developments.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5563
Author(s):  
Xianqiang Cui ◽  
Tianhang Gao ◽  
Changsheng Cai

The existence of colored noise in kinematic positioning will greatly degrade the accuracy of position solutions. This paper proposes a Kalman filter-based quad-constellation global navigation satellite system (GNSS) navigation algorithm with colored noise mitigation. In this algorithm, the observation colored noise and state colored noise models are established by utilizing their residuals in the past epochs, and then the colored noise is predicted using the models for mitigation in the current epoch in the integrated Global Positioning System (GPS)/GLObal NAvigation Satellite System (GLONASS)/BeiDou Navigation Satellite System (BDS)/Galileo navigation. Kinematic single point positioning (SPP) experiments under different satellite visibility conditions and road patterns are conducted to evaluate the effect of colored noise on the positioning accuracy for the quad-constellation combined navigation. Experiment results show that the colored noise model can fit the colored noise more effectively in the case of good satellite visibility. As a result, the positioning accuracy improvement is more significant after handling the colored noise. The three-dimensional positioning accuracy can be improved by 25.1%. Different satellite elevation cut-off angles of 10º, 20º and 30º are set to simulate different satellite visibility situations. Results indicate that the colored noise is decreased with the increment of the elevation cut-off angle. Consequently, the improvement of the SPP accuracy after handling the colored noise is gradually reduced from 27.3% to 16.6%. In the cases of straight and curved roads, the quad-constellation GNSS-SPP accuracy can be improved by 22.1% and 25.7% after taking the colored noise into account. The colored noise can be well-modeled and mitigated in both the straight and curved road conditions.


2020 ◽  
Vol 01 ◽  
Author(s):  
T. Y. Erkec ◽  
C. Hajiyev

Abstract:: This paper is devoted to understand relative navigation models which are used for space vehicles. The relative navigations models and aproaches which are based on different sytems (Inertial Navigation Systems (INS)& Global Navigation Satellite System (GNSS) , Laser&INS, Vision Based, etc.) are compared. These models and aproaches can be used individually or combined with each other for solving the relative navigation problems. Advantages and disadvanteges of the models vary according to the usage area, platform type and environment. Different methods and aproaches exist in addition to different estimation and optimization algoritms for adaptation, control and sensor fusion. Most of the models assume perfect attitude conditions. This study consideres satellites position estimates according to eachother within formation on the Low Earth Orbit (LEO). Also the aim of this article is to understand corelation between the relative navigation systems and effectiveness of the algorithms which are used for the estimating states during constellation or formation flight.


2019 ◽  
Vol 11 (21) ◽  
pp. 2587
Author(s):  
Qin ◽  
Huang ◽  
Zhang ◽  
Wang ◽  
Yan ◽  
...  

In order to provide better service for the Asia-Pacific region, the BeiDou navigation satellite system (BDS) is designed as a constellation containing medium earth orbit (MEO), geostationary earth orbit (GEO), and inclined geosynchronous orbit (IGSO). However, the multi-orbit configuration brings great challenges for orbit determination. When orbit maneuvering, the orbital elements of the maneuvered satellites from broadcast ephemeris are unusable for several hours, which makes it difficult to estimate the initial orbit in the process of precise orbit determination. In addition, the maneuvered force information is unknown, which brings systematic orbit integral errors. In order to avoid these errors, observation data are removed from the iterative adjustment. For the above reasons, the precise orbit products of maneuvered satellites are missing from IGS (international GNSS (Global Navigation Satellite System) service) and iGMAS (international GNSS monitoring and assessment system). This study proposes a method to determine the precise orbits of maneuvered satellites for BeiDou GEO and IGSO. The initial orbits of maneuvered satellites could be backward forecasted according to the precise orbit products. The systematic errors caused by unmodeled maneuvered force are absorbed by estimated pseudo-stochastic pulses. The proposed method for determining the precise orbits of maneuvered satellites is validated by analyzing data of stations from the Multi-GNSS Experiment (MGEX). The results show that the precise orbits of maneuvered satellites can be estimated correctly when orbit maneuvering, which could supplement the precise products from the analysis centers of IGS and iGMAS. It can significantly improve the integrality and continuity of the precise products and subsequently provide better precise products for users.


Sign in / Sign up

Export Citation Format

Share Document