scholarly journals BeiDou Augmented Navigation from Low Earth Orbit Satellites

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 198 ◽  
Author(s):  
Mudan Su ◽  
Xing Su ◽  
Qile Zhao ◽  
Jingnan Liu

Currently, the Global Navigation Satellite System (GNSS) mainly uses the satellites in Medium Earth Orbit (MEO) to provide position, navigation, and timing (PNT) service. The weak navigation signals limit its usage in deep attenuation environments, and make it easy to interference and counterfeit by jammers or spoofers. Moreover, being far away to the Earth results in relatively slow motion of the satellites in the sky and geometric change, making long time needed for achieved centimeter positioning accuracy. By using the satellites in Lower Earth Orbit (LEO) as the navigation satellites, these disadvantages can be addressed. In this contribution, the advantages of navigation from LEO constellation has been investigated and analyzed theoretically. The space segment of global Chinese BeiDou Navigation Satellite System consisting of three GEO, three IGSO, and 24 MEO satellites has been simulated with a LEO constellation with 120 satellites in 10 orbit planes with inclination of 55 degrees in a nearly circular orbit (eccentricity about 0.000001) at an approximate altitude of 975 km. With simulated data, the performance of LEO constellation to augment the global Chinese BeiDou Navigation Satellite System (BeiDou-3) has been assessed, as one of the example to show the promising of using LEO as navigation system. The results demonstrate that the satellite visibility and position dilution of precision have been significantly improved, particularly in mid-latitude region of Asia-Pacific region, once the LEO data were combined with BeiDou-3 for navigation. Most importantly, the convergence time for Precise Point Positioning (PPP) can be shorted from about 30 min to 1 min, which is essential and promising for real-time PPP application. Considering there are a plenty of commercial LEO communication constellation with hundreds or thousands of satellites, navigation from LEO will be an economic and promising way to change the heavily relay on GNSS systems.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Tao Shi ◽  
Xuebin Zhuang ◽  
Liwei Xie

AbstractThe autonomous navigation of the spacecrafts in High Elliptic Orbit (HEO), Geostationary Earth Orbit (GEO) and Geostationary Transfer Orbit (GTO) based on Global Navigation Satellite System (GNSS) are considered feasible in many studies. With the completion of BeiDou Navigation Satellite System with Global Coverage (BDS-3) in 2020, there are at least 130 satellites providing Position, Navigation, and Timing (PNT) services. In this paper, considering the latest CZ-5(Y3) launch scenario of Shijian-20 GEO spacecraft via Super-Synchronous Transfer Orbit (SSTO) in December 2019, the navigation performance based on the latest BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), Galileo Navigation Satellite System (Galileo) and GLObal NAvigation Satellite System (GLONASS) satellites in 2020 is evaluated, including the number of visible satellites, carrier to noise ratio, Doppler, and Position Dilution of Precision (PDOP). The simulation results show that the GEO/Inclined Geo-Synchronous Orbit (IGSO) navigation satellites of BDS-3 can effectively increase the number of visible satellites and improve the PDOP in the whole launch process of a typical GEO spacecraft, including SSTO and GEO, especially for the GEO spacecraft on the opposite side of Asia-Pacific region. The navigation performance of high orbit spacecrafts based on multi-GNSSs can be significantly improved by the employment of BDS-3. This provides a feasible solution for autonomous navigation of various high orbit spacecrafts, such as SSTO, MEO, GEO, and even Lunar Transfer Orbit (LTO) for the lunar exploration mission.


2019 ◽  
Vol 11 (19) ◽  
pp. 2327 ◽  
Author(s):  
Changjiang Hu ◽  
Craig Benson ◽  
Hyuk Park ◽  
Adriano Camps ◽  
Li Qiao ◽  
...  

Global Navigation Satellite System (GNSS) reflected signals can be used to remotely sense the Earth’s surface, known as GNSS reflectometry (GNSS-R). The GNSS-R technique has been applied to numerous areas, such as the retrieval of wind speed, and the detection of Earth surface objects. This work proposes a new application of GNSS-R, namely to detect objects above the Earth’s surface, such as low Earth orbit (LEO) satellites. To discuss its feasibility, 14 delay Doppler maps (DDMs) are first presented which contain unusually bright reflected signals as delays shorter than the specular reflection point over the Earth’s surface. Then, seven possible causes of these anomalies are analysed, reaching the conclusion that the anomalies are likely due to the signals being reflected from objects above the Earth’s surface. Next, the positions of the objects are calculated using the delay and Doppler information, and an appropriate geometry assumption. After that, suspect satellite objects are searched in the satellite database from Union of Concerned Scientists (UCS). Finally, three objects have been found to match the delay and Doppler conditions. In the absence of other reasons for these anomalies, GNSS-R could potentially be used to detect some objects above the Earth’s surface.


2019 ◽  
Vol 11 (21) ◽  
pp. 2587
Author(s):  
Qin ◽  
Huang ◽  
Zhang ◽  
Wang ◽  
Yan ◽  
...  

In order to provide better service for the Asia-Pacific region, the BeiDou navigation satellite system (BDS) is designed as a constellation containing medium earth orbit (MEO), geostationary earth orbit (GEO), and inclined geosynchronous orbit (IGSO). However, the multi-orbit configuration brings great challenges for orbit determination. When orbit maneuvering, the orbital elements of the maneuvered satellites from broadcast ephemeris are unusable for several hours, which makes it difficult to estimate the initial orbit in the process of precise orbit determination. In addition, the maneuvered force information is unknown, which brings systematic orbit integral errors. In order to avoid these errors, observation data are removed from the iterative adjustment. For the above reasons, the precise orbit products of maneuvered satellites are missing from IGS (international GNSS (Global Navigation Satellite System) service) and iGMAS (international GNSS monitoring and assessment system). This study proposes a method to determine the precise orbits of maneuvered satellites for BeiDou GEO and IGSO. The initial orbits of maneuvered satellites could be backward forecasted according to the precise orbit products. The systematic errors caused by unmodeled maneuvered force are absorbed by estimated pseudo-stochastic pulses. The proposed method for determining the precise orbits of maneuvered satellites is validated by analyzing data of stations from the Multi-GNSS Experiment (MGEX). The results show that the precise orbits of maneuvered satellites can be estimated correctly when orbit maneuvering, which could supplement the precise products from the analysis centers of IGS and iGMAS. It can significantly improve the integrality and continuity of the precise products and subsequently provide better precise products for users.


2020 ◽  
Vol 12 (16) ◽  
pp. 2560
Author(s):  
Lingdong Meng ◽  
Jiexian Wang ◽  
Junping Chen ◽  
Bin Wang ◽  
Yize Zhang

We proposed an extended geometry and probability model (EGAPM) to analyze the performance of various kinds of (Global Navigation Satellite System) GNSS+ constellation design scenarios in terms of satellite visibility and dilution of precision (DOP) et al. on global and regional scales. Different from conventional methods, requiring real or simulated satellite ephemerides, this new model only uses some basic parameters of one satellite constellation. Verified by the reference values derived from precise satellite ephemerides, the accuracy of visible satellite visibility estimation using EGAPM gets an accuracy better than 0.11 on average. Applying the EGAPM to evaluate the geometry distribution quality of the hybrid GNSS+ constellation, where highly eccentric orbits (HEO), quasi-zenith orbit (QZO), inclined geosynchronous orbit (IGSO), geostationary earth orbit (GEO), medium earth orbit (MEO), and also low earth orbit (LEO) satellites included, we analyze the overall performance quantities of different constellation configurations. Results show that QZO satellites perform slightly better in the Northern Hemisphere than IGSO satellites. HEO satellites can significantly improve constellation geometry distribution quality in the high latitude regions. With 5 HEO satellites included in the third-generation BeiDou navigation satellite system (BDS-3), the average VDOP (vertical DOP) of the 30° N–90° N region can be decreased by 16.65%, meanwhile satellite visibility can be increased by 38.76%. What is more, the inclusion of the polar LEO constellation can significantly improve GNSS service performance. When including with 288 LEO satellites, the overall DOPs (GDOP (geometric DOP), HDOP (horizontal DOP), PDOP (position DOP), TDOP (time DOP), and VDOP) are decreased by about 40%, and the satellite visibility can be increased by 183.99% relative to the Global Positioning System (GPS) constellation.


2014 ◽  
Vol 67 (3) ◽  
pp. 523-537 ◽  
Author(s):  
Aigong Xu ◽  
Zongqiu Xu ◽  
Xinchao Xu ◽  
Huizhong Zhu ◽  
Xin Sui ◽  
...  

On 27 December 2012 it was announced officially that the Chinese Navigation Satellite System BeiDou (BDS) was able to provide operational services over the Asia-Pacific region. The quality of BDS observations was confirmed as comparable with those of GPS, and relative positioning in static and kinematic modes were also demonstrated to be very promising. As Precise Point Positioning (PPP) technology is widely recognized as a method of precise positioning service, especially in real-time, in this contribution we concentrate on the PPP performance using BDS data only. BDS PPP in static, kinematic and simulated real-time kinematic mode is carried out for a regional network with six stations equipped with GPS- and BDS-capable receivers, using precise satellite orbits and clocks estimated from a global BDS tracking network. To validate the derived positions and trajectories, they are compared to the daily PPP solution using GPS data. The assessment confirms that the performance of BDS PPP is very comparable with GPS in terms of both convergence time and accuracy.


2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


2019 ◽  
Vol 11 (7) ◽  
pp. 787 ◽  
Author(s):  
Jing Qiao ◽  
Wu Chen ◽  
Shengyue Ji ◽  
Duojie Weng

The geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites of the Beidou navigation satellite system are maneuvered frequently. The broadcast ephemeris can be interrupted for several hours after the maneuver. The orbit-only signal-in-space ranging errors (SISREs) of broadcast ephemerides available after the interruption are over two times larger than the errors during normal periods. To shorten the interruption period and improve the ephemeris accuracy, we propose a two-step orbit recovery strategy based on a piecewise linear thrust model. The turning points of the thrust model are firstly determined by comparison of the kinematic orbit with an integrated orbit free from maneuver; afterward, precise orbit determination (POD) is conducted for the maneuvered satellite by estimating satellite orbital and thrust parameters simultaneously. The observations from the IGS Multi-Global Navigation Satellite System (GNSS) Experiment (MGEX) network and ultra-rapid products of the German Research Center for Geosciences (GFZ) are used for orbit determination of maneuvered satellites from Sep to Nov 2017. The results show that for the rapidly recovered ephemerides, the average orbit-only SISREs are 1.15 and 1.0 m 1 h after maneuvering for GEO and IGSO respectively, which is comparable to the accuracy of Beidou broadcast ephemerides in normal cases.


2014 ◽  
Vol 654 ◽  
pp. 181-186 ◽  
Author(s):  
Wei Lin Yuan ◽  
Yan Ma ◽  
Hua Bo Sun

The integrated positioning system increases the visible number of single satellite navigation system and improve the DOP value of single satellite navigation system. In accordance with the construction plan, BeiDou Navigation Satellite System (BDS) has started providing continuous passive positioning, navigation and timing service in the most parts of the Asia-Pacific In this paper, DOP value of GPS, BDS and the integrated navigation system are analyzed theoretically. The improvement of DOP value of GPS which resulted from present-running BDS navigation satellites is calculated by GPS/BDS observational data. The conclusions that GPS/BDS integrated navigation system will be able to improve the positioning accuracy and have useful references for the navigation and positioning application are also obtained.


2021 ◽  
Vol 14 (1) ◽  
pp. 44
Author(s):  
Kan Wang ◽  
Ahmed El-Mowafy ◽  
Weijin Qin ◽  
Xuhai Yang

Nowadays, integrity monitoring (IM) is required for diverse safety-related applications using intelligent transport systems (ITS). To ensure high availability for road transport users for in-lane positioning, a sub-meter horizontal protection level (HPL) is expected, which normally requires a much higher horizontal positioning precision of, e.g., a few centimeters. Precise point positioning-real-time kinematic (PPP-RTK) is a positioning method that could achieve high accuracy without long convergence time and strong dependency on nearby infrastructure. As the first part of a series of papers, this contribution proposes an IM strategy for multi-constellation PPP-RTK positioning based on global navigation satellite system (GNSS) signals. It analytically studies the form of the variance-covariance (V-C) matrix of ionosphere interpolation errors for both accuracy and integrity purposes, which considers the processing noise, the ionosphere activities and the network scale. In addition, this contribution analyzes the impacts of diverse factors on the size and convergence of the HPLs, including the user multipath environment, the ionosphere activity, the network scale and the horizontal probability of misleading information (PMI). It is found that the user multipath environment generally has the largest influence on the size of the converged HPLs, while the ionosphere interpolation and the multipath environments have joint impacts on the convergence of the HPL. Making use of 1 Hz data of Global Positioning System (GPS)/Galileo/Beidou Navigation Satellite System (BDS) signals on L1 and L5 frequencies, for small- to mid-scaled networks, under nominal multipath environments and for a horizontal PMI down to , the ambiguity-float HPLs can converge to 1.5 m within or around 50 epochs under quiet to medium ionosphere activities. Under nominal multipath conditions for small- to mid-scaled networks, with the partial ambiguity resolution enabled, the HPLs can converge to 0.3 m within 10 epochs even under active ionosphere activities.


2021 ◽  
Vol 13 (18) ◽  
pp. 3698
Author(s):  
Haomeng Cui ◽  
Shoujian Zhang

Positioning accuracy is affected by the combined effect of user range errors and the geometric distribution of satellites. Dilution of precision (DOP) is defined as the geometric strength of visible satellites. DOP is calculated based on the satellite broadcast or precise ephemerides. However, because the modernization program of next-generation navigation satellite systems is still under construction, there is a lack of real ephemerides to assess the performance of next-generation constellations. Without requiring real ephemerides, we describe a method to estimate satellite visibility and DOP. The improvement of four next-generation Global Navigation Satellite Systems (four-GNSS-NG), compared to the navigation constellations that are currently in operation (four-GNSS), is statistically analyzed. The augmentation of the full constellation the Quasi-Zenith Satellite System (7-QZSS) and the Navigation with Indian Constellation (11-NavIC) for regional users and the low Earth orbit (LEO) constellation enhancing four-GNSS performance are also analyzed based on this method. The results indicate that the average number visible satellites of the four-GNSS-NG will reach 44.86, and the average geometry DOP (GDOP) will be 1.19, which is an improvement of 17.3% and 7.8%, respectively. With the augmentation of the 120-satellite mixed-orbit LEO constellation, the multi-GNSS visible satellites will increase by 5 to 8 at all latitudes, while the GDOP will be reduced by 6.2% on average. Adding 7-QZSS and 11-NavIC to the four-GNSS-NG, 37.51 to 71.58 satellites are available on global scales. The average position DOP (PDOP), horizontal DOP (HDOP), vertical DOP (VDOP), and time DOP (TDOP) are reduced to 0.82, 0.46, 0.67 and 0.44, respectively.


Sign in / Sign up

Export Citation Format

Share Document