scholarly journals In-Situ and Aircraft Reflectance Measurement Effectiveness for CAL/VAL Activities: A Study over Railroad Valley

2020 ◽  
Vol 12 (20) ◽  
pp. 3366
Author(s):  
Christian Lanconelli ◽  
Andrew Clive Banks ◽  
Jan-Peter Muller ◽  
Carol Bruegge ◽  
Fabrizio Cappucci ◽  
...  

This paper aims to assess the relationship between the surface reflectance derived from ground based and aircraft measurements. The parameters of the Rahman–Pinty–Verstraete (RPV) and Ross Thick-LiSparse (RTLS) kernel based bi-directional reflectance distribution functions (BRDF), have been derived using actual measurements of the hemispherical-directional reflectance factor (HDRF), collected during different campaigns over the Railroad Valley Playa. The effect of the atmosphere, including that of the diffuse radiation on bi-directional reflectance factor (BRF) parameter retrievals, assessed using 6S model simulations, was negligible for the low turbidity conditions of the site under investigation (τ550≤0.05). It was also shown that the effects of the diffuse radiation on RPV spectral parameters retrieval is linear for the isotropic parameter ρ0 and the scattering parameter Θ, and can be described with a second order polynomial for the k-Minnaert parameter. In order to overcome the lack of temporal collocations between aircraft and in-situ measurements, Monte Carlo 3-D radiative transfer simulations mimicking in-situ and remote sensing techniques were performed on a synthetic parametric meshed scene defined by merging Landsat and Multianglhe Imaging Spectroradiometer (MISR) remote sensing reflectance data. We simulated directional reflectance measurements made at different heights for PARABOLA and CAR, and analyzed them according to practices adopted for real measurements, consisting of the inversion of BRF functions and the calculation of the bi-hemispherical reflectance (BHR). The difference of retrievals against the known benchmarks of kernel parameters and BHR is presented. We associated an uncertainty of up to 2% with the retrieval of area averaged BHR, independently of flight altitudes and the BRF model used for the inversion. As expected, the local nature of PARABOLA data is revealed by the difference of the anisotropic kernel parameters with the corresponding parameters retrieved from aircraft loops. The uncertainty of the resultant BHR fell within ±3%.


2021 ◽  
Author(s):  
Edward Hamilton Bair ◽  
Jeff Dozier ◽  
Charles Stern ◽  
Adam LeWinter ◽  
Karl Rittger ◽  
...  

Abstract. Intrinsic albedo is the bihemispherical reflectance of a substance with a smooth surface. Conversely, the apparent albedo is the bihemispherical reflectance of the same substance with a rough surface. For snow, the surface is often rough, and these two optical quantities have different uses: intrinsic albedo is used in scattering equations whereas apparent albedo should be used in energy balance models. Complementing numerous studies devoted to surface roughness and its effect on snow reflectance, this work analyzes a timeseries of intrinsic and apparent snow albedos over a season at a sub-alpine site using an automated terrestrial laser scanner to map the snow surface topography. An updated albedo model accounts for shade, and in situ albedo measurements from a field spectrometer are compared to those from a spaceborne multispectral sensor. A spectral unmixing approach using a shade endmember (to address the common problem of unknown surface topography) produces grain size and impurity solutions; the modeled shade fraction is compared to the intrinsic and apparent albedo difference. As expected and consistent with other studies, the results show that intrinsic albedo is consistently greater than apparent albedo. Both albedos decrease rapidly as ablation hollows form during melt, combining effects of impurities on the surface and increasing roughness. Intrinsic broadband albedos average 7 % greater than apparent albedos, with the difference being about 6 % in the near-infrared or 3–4 % if the average (planar) topography is known and corrected. Field measurements of spectral surface reflectance confirm that multispectral sensors see the apparent albedo but lack the spectral resolution to distinguish between darkening from ablation hollows versus low concentrations of impurities. In contrast, measurements from the field spectrometer have sufficient resolution to discern darkening from the two sources. Based on these results, conclusions are: 1) impurity estimates from multispectral sensors are only reliable for relatively dirty snow with high snow fraction; 2) a shade endmember must be used in spectral mixture models, even for in situ spectroscopic measurements; and 3) snow albedo models should produce apparent albedos by accounting for the shade fraction. The conclusion re-iterates that albedo is the most practical snow reflectance quantity for remote sensing.





Author(s):  
Yu Wang ◽  
Jiantao Wang ◽  
Haiping Wang ◽  
Xinyu Yang ◽  
Liming Chang ◽  
...  

Objective: Accurate assessment of breast tumor size preoperatively is important for the initial decision-making in surgical approach. Therefore, we aimed to compare efficacy of mammography and ultrasonography in ductal carcinoma in situ (DCIS) of breast cancer. Methods: Preoperative mammography and ultrasonography were performed on 104 women with DCIS of breast cancer. We compared the accuracy of each of the imaging modalities with pathological size by Pearson correlation. For each modality, it was considered concordant if the difference between imaging assessment and pathological measurement is less than 0.5cm. Results: At pathological examination tumor size ranged from 0.4cm to 7.2cm in largest diameter. For mammographically determined size versus pathological size, correlation coefficient of r was 0.786 and for ultrasonography it was 0.651. Grouped by breast composition, in almost entirely fatty and scattered areas of fibroglandular dense breast, correlation coefficient of r was 0.790 for mammography and 0.678 for ultrasonography; in heterogeneously dense and extremely dense breast, correlation coefficient of r was 0.770 for mammography and 0.548 for ultrasonography. In microcalcification positive group, coeffient of r was 0.772 for mammography and 0.570 for ultrasonography. In microcalcification negative group, coeffient of r was 0.806 for mammography and 0.783 for ultrasonography. Conclusion: Mammography was more accurate than ultrasonography in measuring the largest cancer diameter in DCIS of breast cancer. The correlation coefficient improved in the group of almost entirely fatty/ scattered areas of fibroglandular dense breast or in microcalcification negative group.



Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 981
Author(s):  
Patricia Ortega-Jiménez ◽  
Miguel A. Sordo ◽  
Alfonso Suárez-Llorens

The aim of this paper is twofold. First, we show that the expectation of the absolute value of the difference between two copies, not necessarily independent, of a random variable is a measure of its variability in the sense of Bickel and Lehmann (1979). Moreover, if the two copies are negatively dependent through stochastic ordering, this measure is subadditive. The second purpose of this paper is to provide sufficient conditions for comparing several distances between pairs of random variables (with possibly different distribution functions) in terms of various stochastic orderings. Applications in actuarial and financial risk management are given.



Author(s):  
Jianping Fan ◽  
Jing Wang ◽  
Meiqin Wu

The two-dimensional belief function (TDBF = (mA, mB)) uses a pair of ordered basic probability distribution functions to describe and process uncertain information. Among them, mB includes support degree, non-support degree and reliability unmeasured degree of mA. So it is more abundant and reasonable than the traditional discount coefficient and expresses the evaluation value of experts. However, only considering that the expert’s assessment is single and one-sided, we also need to consider the influence between the belief function itself. The difference in belief function can measure the difference between two belief functions, based on which the supporting degree, non-supporting degree and unmeasured degree of reliability of the evidence are calculated. Based on the divergence measure of belief function, this paper proposes an extended two-dimensional belief function, which can solve some evidence conflict problems and is more objective and better solve a class of problems that TDBF cannot handle. Finally, numerical examples illustrate its effectiveness and rationality.



Author(s):  
Yu-Hsiang Wu ◽  
Elizabeth Stangl ◽  
Octav Chipara ◽  
Anna Gudjonsdottir ◽  
Jacob Oleson ◽  
...  

Abstract Background Ecological momentary assessment (EMA) is a methodology involving repeated surveys to collect in-situ self-reports that describe respondents' current or recent experiences. Audiology literature comparing in-situ and retrospective self-reports is scarce. Purpose To compare the sensitivity of in-situ and retrospective self-reports in detecting the outcome difference between hearing aid technologies, and to determine the association between in-situ and retrospective self-reports. Research Design An observational study. Study Sample Thirty-nine older adults with hearing loss. Data Collection and Analysis The study was part of a larger clinical trial that compared the outcomes of a prototype hearing aid (denoted as HA1) and a commercially available device (HA2). In each trial condition, participants wore hearing aids for 4 weeks. Outcomes were measured using EMA and retrospective questionnaires. To ensure that the outcome data could be directly compared, the Glasgow Hearing Aid Benefit Profile was administered as an in-situ self-report (denoted as EMA-GHABP) and as a retrospective questionnaire (retro-GHABP). Linear mixed models were used to determine if the EMA- and retro-GHABP could detect the outcome difference between HA1 and HA2. Correlation analyses were used to examine the association between EMA- and retro-GHABP. Results For the EMA-GHABP, HA2 had significantly higher (better) scores than HA1 in the GHABP subscales of benefit, residual disability, and satisfaction (p = 0.029–0.0015). In contrast, the difference in the retro-GHABP score between HA1 and HA2 was significant only in the satisfaction subscale (p = 0.0004). The correlations between the EMA- and retro-GHABP were significant in all subscales (p = 0.0004 to <0.0001). The strength of the association ranged from weak to moderate (r = 0.28–0.58). Finally, the exit interview indicated that 29 participants (74.4%) preferred HA2 over HA1. Conclusion The study suggests that in-situ self-reports collected using EMA could have a higher sensitivity than retrospective questionnaires. Therefore, EMA is worth considering in clinical trials that aim to compare the outcomes of different hearing aid technologies. The weak to moderate association between in-situ and retrospective self-reports suggests that these two types of measures assess different aspects of hearing aid outcomes.



2021 ◽  
Vol 13 (9) ◽  
pp. 1715
Author(s):  
Foyez Ahmed Prodhan ◽  
Jiahua Zhang ◽  
Fengmei Yao ◽  
Lamei Shi ◽  
Til Prasad Pangali Sharma ◽  
...  

Drought, a climate-related disaster impacting a variety of sectors, poses challenges for millions of people in South Asia. Accurate and complete drought information with a proper monitoring system is very important in revealing the complex nature of drought and its associated factors. In this regard, deep learning is a very promising approach for delineating the non-linear characteristics of drought factors. Therefore, this study aims to monitor drought by employing a deep learning approach with remote sensing data over South Asia from 2001–2016. We considered the precipitation, vegetation, and soil factors for the deep forwarded neural network (DFNN) as model input parameters. The study evaluated agricultural drought using the soil moisture deficit index (SMDI) as a response variable during three crop phenology stages. For a better comparison of deep learning model performance, we adopted two machine learning models, distributed random forest (DRF) and gradient boosting machine (GBM). Results show that the DFNN model outperformed the other two models for SMDI prediction. Furthermore, the results indicated that DFNN captured the drought pattern with high spatial variability across three penology stages. Additionally, the DFNN model showed good stability with its cross-validated data in the training phase, and the estimated SMDI had high correlation coefficient R2 ranges from 0.57~0.90, 0.52~0.94, and 0.49~0.82 during the start of the season (SOS), length of the season (LOS), and end of the season (EOS) respectively. The comparison between inter-annual variability of estimated SMDI and in-situ SPEI (standardized precipitation evapotranspiration index) showed that the estimated SMDI was almost similar to in-situ SPEI. The DFNN model provides comprehensive drought information by producing a consistent spatial distribution of SMDI which establishes the applicability of the DFNN model for drought monitoring.



2021 ◽  
Vol 11 (8) ◽  
pp. 3317
Author(s):  
C.S. Quintans ◽  
Denis Andrienko ◽  
Katrin F. Domke ◽  
Daniel Aravena ◽  
Sangho Koo ◽  
...  

External electric fields (EEFs) have proven to be very efficient in catalysing chemical reactions, even those inaccessible via wet-chemical synthesis. At the single-molecule level, oriented EEFs have been successfully used to promote in situ single-molecule reactions in the absence of chemical catalysts. Here, we elucidate the effect of an EEFs on the structure and conductance of a molecular junction. Employing scanning tunnelling microscopy break junction (STM-BJ) experiments, we form and electrically characterize single-molecule junctions of two tetramethyl carotene isomers. Two discrete conductance signatures show up more prominently at low and high applied voltages which are univocally ascribed to the trans and cis isomers of the carotenoid, respectively. The difference in conductance between both cis-/trans- isomers is in concordance with previous predictions considering π-quantum interference due to the presence of a single gauche defect in the trans isomer. Electronic structure calculations suggest that the electric field polarizes the molecule and mixes the excited states. The mixed states have a (spectroscopically) allowed transition and, therefore, can both promote the cis-isomerization of the molecule and participate in electron transport. Our work opens new routes for the in situ control of isomerisation reactions in single-molecule contacts.



2021 ◽  
pp. 105623
Author(s):  
Stefan Becker ◽  
Ramesh Prasad Sapkota ◽  
Binod Pokharel ◽  
Loknath Adhikari ◽  
Rudra Prasad Pokhrel ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document