scholarly journals Cloudy Region Drought Index (CRDI) Based on Long-Time-Series Cloud Optical Thickness (COT) and Vegetation Conditions Index (VCI): A Case Study in Guangdong, South Eastern China

2020 ◽  
Vol 12 (21) ◽  
pp. 3641
Author(s):  
Weijiao Li ◽  
Yunpeng Wang ◽  
Jingxue Yang

Widespread and long-lasting drought disasters can aggravate environmental degradation. They can lead to significant economic losses and even affect social stability. The existing drought index mostly chose arid and semi-arid regions as study areas, because cloudy weather in humid and semi-humid regions hindered the satellite in its attempts to obtain the surface reflectivity. In order to solve this problem, a cloudy region drought index (CRDI) is proposed to estimate the drought of the clouded pixels. Due to the cumulative effect of drought, the antecedent drought index (ADI) has a certain impact on the calculation of the current drought. Furthermore, cloud is the only source of natural precipitation, and it also affects the evaporation and emission process on the ground. Therefore, based on the remote sensing drought index, ADI and cloud optical thickness (COT) are used to estimate the drought of pixels with missing data due to cloud occlusion. In this paper, a case study of the cloudy Guangdong, which is located in a humid area, is presented. First, we calculated the CRDI using Moderate Resolution Imaging Spectroradiometer (MODIS) data from 2003 to 2017, and then discussed the effect of CRDI with the data from 2016 as examples. Through the analysis of the parameters of regression equation, filling efficiency, rationality of the estimated value, the continuity of CRDI and the rationality of CRDI spatial distribution results, it is concluded that CRDI can effectively estimate the drought severity of the cloud-covered pixels, and more comprehensive drought data can be obtained by using CRDI. The successful application of CRDI in Guangdong shows it is robust and flexible, suggesting high efficiency and great potential for further utilization.

2020 ◽  
Author(s):  
George Karagiannakis

This paper deals with state of the art risk and resilience calculations for industrial plants. Resilience is a top priority issue on the agenda of societies due to climate change and the all-time demand for human life safety and financial robustness. Industrial plants are highly complex systems containing a considerable number of equipment such as steel storage tanks, pipe rack-piping systems, and other installations. Loss Of Containment (LOC) scenarios triggered by past earthquakes due to failure on critical components were followed by severe repercussions on the community, long recovery times and great economic losses. Hence, facility planners and emergency managers should be aware of possible seismic damages and should have already established recovery plans to maximize the resilience and minimize the losses. Seismic risk assessment is the first step of resilience calculations, as it establishes possible damage scenarios. In order to have an accurate risk analysis, the plant equipment vulnerability must be assessed; this is made feasible either from fragility databases in the literature that refer to customized equipment or through numerical calculations. Two different approaches to fragility assessment will be discussed in this paper: (i) code-based Fragility Curves (FCs); and (ii) fragility curves based on numerical models. A carbon black process plant is used as a case study in order to display the influence of various fragility curve realizations taking their effects on risk and resilience calculations into account. Additionally, a new way of representing the total resilience of industrial installations is proposed. More precisely, all possible scenarios will be endowed with their weighted recovery curves (according to their probability of occurrence) and summed together. The result is a concise graph that can help stakeholders to identify critical plant equipment and make decisions on seismic mitigation strategies for plant safety and efficiency. Finally, possible mitigation strategies, like structural health monitoring and metamaterial-based seismic shields are addressed, in order to show how future developments may enhance plant resilience. The work presented hereafter represents a highly condensed application of the research done during the XP-RESILIENCE project, while more detailed information is available on the project website https://r.unitn.it/en/dicam/xp-resilience.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3716
Author(s):  
Francesco Causone ◽  
Rossano Scoccia ◽  
Martina Pelle ◽  
Paola Colombo ◽  
Mario Motta ◽  
...  

Cities and nations worldwide are pledging to energy and carbon neutral objectives that imply a huge contribution from buildings. High-performance targets, either zero energy or zero carbon, are typically difficult to be reached by single buildings, but groups of properly-managed buildings might reach these ambitious goals. For this purpose we need tools and experiences to model, monitor, manage and optimize buildings and their neighborhood-level systems. The paper describes the activities pursued for the deployment of an advanced energy management system for a multi-carrier energy grid of an existing neighborhood in the area of Milan. The activities included: (i) development of a detailed monitoring plan, (ii) deployment of the monitoring plan, (iii) development of a virtual model of the neighborhood and simulation of the energy performance. Comparisons against early-stage energy monitoring data proved promising and the generation system showed high efficiency (EER equal to 5.84), to be further exploited.


Author(s):  
Sheree A Pagsuyoin ◽  
Joost R Santos

Water is a critical natural resource that sustains the productivity of many economic sectors, whether directly or indirectly. Climate change alongside rapid growth and development are a threat to water sustainability and regional productivity. In this paper, we develop an extension to the economic input-output model to assess the impact of water supply disruptions to regional economies. The model utilizes the inoperability variable, which measures the extent to which an infrastructure system or economic sector is unable to deliver its intended output. While the inoperability concept has been utilized in previous applications, this paper offers extensions that capture the time-varying nature of inoperability as the sectors recover from a disruptive event, such as drought. The model extension is capable of inserting inoperability adjustments within the drought timeline to capture time-varying likelihoods and severities, as well as the dependencies of various economic sectors on water. The model was applied to case studies of severe drought in two regions: (1) the state of Massachusetts (MA) and (2) the US National Capital Region (NCR). These regions were selected to contrast drought resilience between a mixed urban–rural region (MA) and a highly urban region (NCR). These regions also have comparable overall gross domestic products despite significant differences in the distribution and share of the economic sectors comprising each region. The results of the case studies indicate that in both regions, the utility and real estate sectors suffer the largest economic loss; nonetheless, results also identify region-specific sectors that incur significant losses. For the NCR, three sectors in the top 10 ranking of highest economic losses are government-related, whereas in the MA, four sectors in the top 10 are manufacturing sectors. Furthermore, the accommodation sector has also been included in the NCR case intuitively because of the high concentration of museums and famous landmarks. In contrast, the Wholesale Trade sector was among the sectors with the highest economic losses in the MA case study because of its large geographic size conducive for warehouses used as nodes for large-scale supply chain networks. Future modeling extensions could potentially include analysis of water demand and supply management strategies that can enhance regional resilience against droughts. Other regional case studies can also be pursued in future efforts to analyze various categories of drought severity beyond the case studies featured in this paper.


Water ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 315 ◽  
Author(s):  
Lei Zou ◽  
Jun Xia ◽  
Like Ning ◽  
Dunxian She ◽  
Chesheng Zhan

Sign in / Sign up

Export Citation Format

Share Document