scholarly journals A Review on Assessing and Mapping Soil Erosion Hazard Using Geo-Informatics Technology for Farming System Management

2020 ◽  
Vol 12 (24) ◽  
pp. 4063
Author(s):  
Sumudu Senanayake ◽  
Biswajeet Pradhan ◽  
Alfredo Huete ◽  
Jane Brennan

Soil erosion is a severe threat to food production systems globally. Food production in farming systems decreases with increasing soil erosion hazards. This review article focuses on geo-informatics applications for identifying, assessing and predicting erosion hazards for sustainable farming system development. Several researchers have used a variety of quantitative and qualitative methods with erosion models, integrating geo-informatics techniques for spatial interpretations to address soil erosion and land degradation issues. The review identified different geo-informatics methods of erosion hazard assessment and highlighted some research gaps that can provide a basis to develop appropriate novel methodologies for future studies. It was found that rainfall variation and land-use changes significantly contribute to soil erosion hazards. There is a need for more research on the spatial and temporal pattern of water erosion with rainfall variation, innovative techniques and strategies for landscape evaluation to improve the environmental conditions in a sustainable manner. Examining water erosion and predicting erosion hazards for future climate scenarios could also be approached with emerging algorithms in geo-informatics and spatiotemporal analysis at higher spatial resolutions. Further, geo-informatics can be applied with real-time data for continuous monitoring and evaluation of erosion hazards to risk reduction and prevent the damages in farming systems.

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1124
Author(s):  
Salman A. H. Selmy ◽  
Salah H. Abd Al-Aziz ◽  
Raimundo Jiménez-Ballesta ◽  
Francisco Jesús García-Navarro ◽  
Mohamed E. Fadl

Soil erosion modeling is becoming more significant in the development and implementation of soil management and conservation policies. For a better understanding of the geographical distribution of soil erosion, spatial-based models of soil erosion are required. The current study proposed a spatial-based model that integrated geographic information systems (GIS) techniques with both the universal soil loss equation (USLE) model and the Index of Land Susceptibility to Wind Erosion (ILSWE). The proposed Spatial Soil Loss Model (SSLM) was designed to generate the potential soil erosion maps based on water erosion and wind erosion by integrating factors of the USLE and ILSWE models into the GIS environment. Hence, the main objective of this study is to predict, quantify, and assess the soil erosion hazards using the SSLM in the Dakhla Oasis as a case study. The water soil loss values were computed by overlaying the values of five factors: the rainfall factor (R-Factor), soil erodibility (K-Factor), topography (LS-Factor), crop types (C-Factor), and conservation practice (P-Factor). The severity of wind-driven soil loss was calculated by overlaying the values of five factors: climatic erosivity (CE-Factor), soil erodibility (E-Factor), soil crust (SC-Factor), vegetation cover (VC-Factor), and surface roughness (SR-Factor). The proposed model was statistically validated by comparing its outputs to the results of USLE and ILSWE models. Soil loss values based on USLE and SSLM varied from 0.26 to 3.51 t ha−1 yr−1 with an average of 1.30 t ha−1 yr−1 and from 0.26 to 3.09 t ha−1 yr−1 with a mean of 1.33 t ha−1 yr−1, respectively. As a result, and according to the assessment of both the USLE and the SSLM, one soil erosion class, the very low class (<6.7 t ha−1 yr−1), has been reported to be the prevalent erosion class in the study area. These findings indicate that the Dakhla Oasis is slightly eroded and more tolerable against water erosion factors under current management conditions. Furthermore, the study area was classified into four classes of wind erosion severity: very slight, slight, moderate, and high, representing 1.0%, 25.2%, 41.5%, and 32.3% of the total study area, respectively, based on the ILSWE model and 0.9%, 25.4%, 43.9%, and 29.9%, respectively, according to the SSLM. Consequently, the Dakhla Oasis is qualified as a promising area for sustainable agriculture when appropriate management is applied. The USLE and ILSWE model rates had a strong positive correlation (r = 0.97 and 0.98, respectively), with the SSLM rates, as well as a strong relationship based on the average linear regression (R2 = 0.94 and 0.97, respectively). The present study is an attempt to adopt a spatial-based model to compute and map the potential soil erosion. It also pointed out that designing soil erosion spatial models using available data sources and the integration of USLE and ILSWE with GIS techniques is a viable option for calculating soil loss rates. Therefore, the proposed soil erosion spatial model is fit for calculating and assessing soil loss rates under this study and is valid for use in other studies under arid regions with the same conditions.


2021 ◽  
Author(s):  
Olef Koch ◽  
Pierre L. Ibisch ◽  
Ralf Bloch

Abstract Applying a Regional Integrated Vulnerability Assessment (RIVAS), this study aims to identify local farming system characteristics, their climate change vulnerability and how they are affected by current land use changes. Results show that the assessed farming systems' multifunctionality is essential to rural livelihoods whilst sustaining crop and tree diversity. While dry season crop diversity drives household's sufficiency and capacity to respond to crop failure, medium-low productivity in more than a third of the assessed systems, and soil degradation in cereal fields lessen adaptive capacity. For their contribution to climate resilience diverse and perennial cropping regimes should be promoted and maintained.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
IGKG Puritan Wijaya ADH

ABSTRACT<br />When farmers are faced with the problem of food production, which demands production quality<br />with standardization and production of production throughout the year without any climate<br />problems. So, it will be difficult for farmers to compete in the global market. Coupled with the<br />maintenance of the world's climate conditions, and some lands in Indonesia are starting to lose<br />nutrients. For these problems, the hydroponic farming system with greenhouse technology can be<br />a promising solution. Hydroponic farming systems with greenhouse technology can reduce the risk<br />due to attacks of pests, diseases and uncontrolled weather. However, there are several contexts<br />carried out by experts in the application of hydroponics in Indonesia, namely: Very simple<br />technology because of limited farmers' capital; HR mastery of hydroponic technology and<br />techniques is very limited. The design of the ATMega microcontroller-based plant nutrition control<br />system with the additional function of temperature, humidity and hydroponic nutrition control<br />sensors can help overcome the problem, which is a technology solution that is friendly to farmers<br />and easy for farmers.<br />Keywords: Hydroponic, automatitation, fertigasi, mikrokontroler<br />ABSTRAK<br />Ketika petani dihadapkan pada permasalahan produksi pangan, yang menuntut kualitas produksi<br />dengan standarisasi tertentu dan kuantitas produksi sepanjang tahun tanpa ada permasalahan iklim.<br />Maka, akan sulit bagi para petani untuk bersaing di pasar global. Ditambah lagi dengan adanya<br />tantangan kondisi iklim dunia yang mengalami perubahan, dan beberapa lahan di Indonesia mulai<br />kehilangan nutrisi. Untuk permasalahan tersebut, sistem pertanian hidroponik dengan teknologi<br />greenhouse dapat menjadi solusi yang menjanjikan. Sistem pertanian hidroponik dengan teknologi<br />greenhouse dapat mengurangi resiko kegagalan panen akibat serangan hama, penyakit dan cuaca<br />yang tidak terkontrol. Namun, ada beberapa kendala yang sering dihadapi oleh para petani dalam<br />penerapan hidroponik di Indonesia, diantaranya: Teknologi yang sangat sederhana karena modal<br />petani yang terbatas; Penguasaan SDM terhadap teknologi dan teknik hidroponik sangat terbatas.<br />Perancangan sistem pengendalian nutrisi tanaman berbasis mikrokontroler ATMega dengan fungsi<br />tambahan sensor-sensor suhu, kelembapan tanah dan kontrol pengaturan campuran nutrisi<br />hidroponik dapat mengatasi beberapa permasalahan tersebut, yang merupakan solusi teknologi<br />yang ramah untuk petani dan mudah digunakan para petani.<br />Kata Kunci : hidroponik, otomatisasi, fertigasi, mikrokontroler.


Author(s):  
Hleb S. Lazovik ◽  
Antonina A. Topaz

The article presents a method for creating a territory erosion hazard integrated map using RUSLE integral model, Earth remote sensing data and GIS technologies. The studies carried out on this topic are presented, the analysis of which has shown a more active use of integral indicators of water-erosion processes in foreign scientific works. Urgency of updating methodology for studying erosion processes has been substantiated. Theoretical foundations of the application of integral models of soil erosion are given, the application of the RUSLE model is substantiated, and the optimal way of using this model is proposed. The research methodology has been developed, consisting of primary processing of remote sensing data, calculation of the factors of erosion development and creation of a territory erosion hazard integrated map. Based on the processing of aerial photography materials, a point cloud, a digital elevation model and an orthomosaic map of the study area were created. The results of the geoinformation analysis of the remote sensing data, which included calculation of the soil erodibility factor and the topographic factor, are presented. Based on the integral indicator of watererosion hazard, a complex map of the erosion hazard of the territory has been created. Main patterns of geographical distribution of the values of the integral indicator of the water-erosion hazard of the territory are revealed, devised methodology is assessed. It was found that the schematic map reflects the general pattern of water erosion processes: they are more active in places where more dissected relief is spread. Influence of the soil factor on the pattern of the schematic map is shown: the pattern in the territories occupied by sod-podzolic loamy soils qualitatively differs from the pattern on the lands where sod-podzolic sandy loam soils are widespread. Patterns on the schematic map of different parts of the developed linear forms of relief, formed by temporary streams, are described. It is shown that the proposed method can be used to assess the water-erosion hazard of the territory. The need to take into account a larger number of factors and to refine the assessment of existing ones is concluded.


2018 ◽  
Vol 2 (95) ◽  
pp. 78-81
Author(s):  
L.I. Shkarivska

The changes of the soil’s humus soil within the rural areas are investigated for the organic farming system. The most significant impact of organic agriculture on humus content over 55% was observed on soddy podzolic soils (V>75%), the lowest –7,5% on typical chernozem (V≈16%). Changes in the qualitative composition of humus for the introduction of various types of organic substrates are analyzed.


The farming system in West Bengal is being shifted by integration between the set of cash crops and the main food harvest process. This change in diversified farming systems, where smallholders have a production base in rice can complement production; affect technical efficiency and farm performance. The goal of this study was to investigate the status of crop diversification on smallholders in West Bengal. First, crop diversification regions were developed in West Bengal based on the Herfindahl index, which were categorized into three regions. Three sample districts were studied separately at the block level, and 915 small farmers from 41 sample villages of 9 sample blocks were interviewed through a good structure questionnaire for field studies from the sample districts. West Bengal was gradually moving towards multiple crop production. Furthermore, increasing rice production reduced the marginal use of inputs for the production of other crops. Farming and other vital factors such as HYVs area to GCA, average holding size and per capita income in some districts of West Bengal can be identified as determinants of crop diversification.


2017 ◽  
Vol 4 (2) ◽  
Author(s):  
SANJEEV KUMAR ◽  
SHIVANI . ◽  
S. K. SAMAL ◽  
S. K. DWIVEDI ◽  
MANIBHUSHAN .

Integration of different components viz. livestock, fishery, horticulture, mushroom etc. along with field crops not only enhanced productivity but by-products (waste) of one component act as input for another component through resource recycling within the system. Six integrated farming systems models with suitable combinations of Crop, vegetables, fruit trees, fish, livestock, mushroom etc. were made and evaluated at the experimental farm of ICAR Research Complex for Eastern Region, Patna during 2012-16 for harness maximum income, nutrient recycling and employment. Among six combinations, crop + fish + duck + goat resulted as most profitable combination in terms of productivity (RGEY- 22.2t), net income (Rs. 2,15,900/ha), additional employment (170 days/year) with income sustainability index (ISI) by 90.2. Upon nutrient recycling prepared from different wastes from the system Crop + fish + duck + goat combination added N (56.5 kg), P (39.6 kg) and K (42.7 kg) into the soil and reduced the cost of cultivation by 24 percent and was followed by crop + fish + goat combination. Crops grown under IFS mode with different types of manures produced 31 percent higher yield over conventional rice- wheat system. The contribution of crops towards the system productivity ranged from 36.4 to 56.2 %, while fish ranged from 22.0-33.5 %; for goat 25.4-32.9 %; for poultry 38.7 %; for duck 22.0-29.0 %; for cattle 32.2% and for mushroom 10.3 %.


Sign in / Sign up

Export Citation Format

Share Document