scholarly journals Incident Angle Dependence of Sentinel-1 Texture Features for Sea Ice Classification

2021 ◽  
Vol 13 (4) ◽  
pp. 552
Author(s):  
Johannes Lohse ◽  
Anthony P. Doulgeris ◽  
Wolfgang Dierking

Robust and reliable classification of sea ice types in synthetic aperture radar (SAR) images is needed for various operational and environmental applications. Previous studies have investigated the class-dependent decrease in SAR backscatter intensity with incident angle (IA); others have shown the potential of textural information to improve automated image classification. In this work, we investigate the inclusion of Sentinel-1 (S1) texture features into a Bayesian classifier that accounts for linear per-class variation of its features with IA. We use the S1 extra-wide swath (EW) product in ground-range detected format at medium resolution (GRDM), and we compute seven grey level co-occurrence matrix (GLCM) texture features from the HH and the HV backscatter intensity in the linear and logarithmic domain. While GLCM texture features obtained in the linear domain vary significantly with IA, the features computed from the logarithmic intensity do not depend on IA or reveal only a weak, approximately linear dependency. They can therefore be directly included in the IA-sensitive classifier that assumes a linear variation. The different number of looks in the first sub-swath (EW1) of the product causes a distinct offset in texture at the sub-swath boundary between EW1 and the second sub-swath (EW2). This offset must be considered when using texture in classification; we demonstrate a manual correction for the example of GLCM contrast. Based on the Jeffries–Matusita distance between class histograms, we perform a separability analysis for 57 different GLCM parameter settings. We select a suitable combination of features for the ice classes in our data set and classify several test images using a combination of intensity and texture features. We compare the results to a classifier using only intensity. Particular improvements are achieved for the generalized separation of ice and water, as well as the classification of young ice and multi-year ice.

2021 ◽  
Author(s):  
Wenkai Guo ◽  
Polona Itkin ◽  
Johannes Lohse ◽  
Malin Johansson ◽  
Anthony Paul Doulgeris

Abstract. Wide-swath C-band synthetic aperture radar (SAR) has been used for sea ice classification and estimates of sea ice drift and deformation since it first became widely available in the 1990s. Here, we examine the potential to distinguish surface features created by sea ice deformation using ice type classification of SAR data. To perform this task with extended spatial and temporal coverage, we investigate the cross-platform transferability between training sets derived from Sentinel-1 Extra Wide (S1 EW) and RADARSAT-2 (RS2) ScanSAR Wide A (SCWA) and Fine Quad-polarimetric (FQ) data, as the same radiometrically calibrated backscatter coefficients are expected from these two C-band SAR platforms. For this, we use a novel sea ice classification method developed based on Arctic-wide S1 EW training, which considers the ice-type-dependent change of SAR backscatter intensity with incident angle (IA). This study focuses on the region near Fram Strait north of Svalbard to utilize expert knowledge of ice conditions from co-authors who participated in the Norwegian young sea ICE (N-ICE2015) expedition in the region. Separate training sets for S1 EW, RS2 SCWA and RS2 FQ data are derived using manually drawn polygons of different ice types, and are used to re-train the classifier. Results show that although the best classification accuracy is achieved for each dataset using its own training, different training sets yield similar results and IA slopes, with the exception of leads with calm open water, nilas or newly formed ice (the “leads”' class). This is found to be caused by different noise floor configurations of S1 and RS2 data, which lead to different IA slopes of this class. This indicates that dataset-specific re-training is needed for leads in the cross-platform application of the classifier. Based on the classifier thus re-trained for each dataset, the classification scheme is altered to target the separation of level and deformed ice, which enables direct comparison with independently derived sea ice deformation maps. The comparisons show that the classification of C-band SAR can be used to distinguish areas of ice divergence occupied by leads, young ice and level first-year ice (LFYI). However, it has limited capacity in delineating areas of ice deformation due to ambiguities in ice types represented by classes with higher backscatter intensities. This study provides reference to future studies seeking cross-platform application of training sets so they are fully utilized, and we expect further development of the classifier and the inclusion of other SAR datasets to enable image classification-based ice deformation detection using only satellite SAR data.


2004 ◽  
Vol 26 (3) ◽  
pp. 125-134
Author(s):  
Armin Gerger ◽  
Patrick Bergthaler ◽  
Josef Smolle

Aims. In tissue counter analysis (TCA) digital images of complex histologic sections are dissected into elements of equal size and shape, and digital information comprising grey level, colour and texture features is calculated for each element. In this study we assessed the feasibility of TCA for the quantitative description of amount and also of distribution of immunostained material. Methods. In a first step, our system was trained for differentiating between background and tissue on the one hand and between immunopositive and so‐called other tissue on the other. In a second step, immunostained slides were automatically screened and the procedure was tested for the quantitative description of amount of cytokeratin (CK) and leukocyte common antigen (LCA) immunopositive structures. Additionally, fractal analysis was applied to all cases describing the architectural distribution of immunostained material. Results. The procedure yielded reproducible assessments of the relative amounts of immunopositive tissue components when the number and percentage of CK and LCA stained structures was assessed. Furthermore, a reliable classification of immunopositive patterns was found by means of fractal dimensionality. Conclusions. Tissue counter analysis combined with classification trees and fractal analysis is a fully automated and reproducible approach for the quantitative description in immunohistology.


2021 ◽  
Vol 35 (3) ◽  
pp. 201-207
Author(s):  
Halaguru Basavarajappa Basanth Kumar ◽  
Haranahalli Rajanna Chennamma

With the rapid advancement in digital image rendering techniques, allows the user to create surrealistic computer graphic (CG) images which are hard to distinguish from photographs captured by digital cameras. In this paper, classification of CG images and photographic (PG) images based on fusion of global features is presented. Color and texture of an image represents global features. Texture feature descriptors such as gray level co-occurrence matrix (GLCM) and local binary pattern (LBP) are considered. Different combinations of these global features are investigated on various datasets. Experimental results show that, fusion of color and texture features subset can achieve best classification results over other feature combinations.


Author(s):  
Xiaoming Li ◽  
Yan Sun ◽  
Qiang Zhang

In this paper, we focus on developing a novel method to extract sea ice cover (i.e., discrimination/classification of sea ice and open water) using Sentinel-1 (S1) cross-polarization (vertical-horizontal, VH or horizontal-vertical, HV) data in extra wide (EW) swath mode based on the machine learning algorithm support vector machine (SVM). The classification basis includes the S1 radar backscatter coefficients and texture features that are calculated from S1 data using the gray level co-occurrence matrix (GLCM). Different from previous methods where appropriate samples are manually selected to train the SVM to classify sea ice and open water, we proposed a method of unsupervised generation of the training samples based on two GLCM texture features, i.e. entropy and homogeneity, that have contrasting characteristics on sea ice and open water. We eliminate the most uncertainty of selecting training samples in machine learning and achieve automatic classification of sea ice and open water by using S1 EW data. The comparison shows good agreement between the SAR-derived sea ice cover using the proposed method and a visual inspection, of which the accuracy reaches approximately 90% - 95% based on a few cases. Besides this, compared with the analyzed sea ice cover data Ice Mapping System (IMS) based on 728 S1 EW images, the accuracy of extracted sea ice cover by using S1 data is more than 80%.


2020 ◽  
Vol 31 (4) ◽  
pp. 72
Author(s):  
Hayder Adnan AlSudani ◽  
Enaas M. Hussain ◽  
Enam A. Khalil

Cancer of the breast is one of the world's most prevalent causes of death for women. Early and efficient identification is important for can care choices and reducing mortality. Mammography is the most effective early breast cancer detection process. Radiologists cannot however make a detailed and reliable assessment of mammograms due to fatigue or poor image quality. The main aim of this work is to establish a new approach to help radiologists identify anomalies and improve diagnostic precision. The proposed method has been applied through the implementation of preprocessing then segmentation of the images to get the region of interest that was used to find a texture features that were calculated based on first Order (statistical features), Gray-Level Co-Occurrence Matrix (GLCM), and Local Binary Patterns LBP (LBP). In the features selection phase mutual information (MI) algorithm is applied to choose from the extracted features collection suitable features. Finally, Multilayer Perceptron has been applied in two stages to classify the mammography images first to normal or abnormal, and secondly, classification of abnormal images into benign or malignant images. This method was implemented and gave an accuracy of 92.91 % for the first level and 93.15% for the second level classification.


2020 ◽  
Vol 16 (6) ◽  
pp. 421-429
Author(s):  
Praveen Kumar Moganam ◽  
Denis Ashok Sathia Seelan

Detection of defects in a typical leather surface is a difficult task due to the complex, non-homogenous and random nature of texture pattern. This paper presents a texture analysis based leather defect identification approach using a neural network classification of defective and non-defective leather. In this work, Gray Level Co-occurrence Matrix (GLCM) is used for extracting different statistical texture features of defective and non-defective leather. Based on the labelled data set of texture features, perceptron neural network classifier is trained for defect identification. Five commonly occurring leather defects such as folding marks, grain off, growth marks, loose grain and pin holes were detected and the classification results of perceptron network are presented. Proposed method was tested for the image library of 1232 leather samples and the accuracy of classification for the defect detection using confusion matrix is found to be 94.2%. Proposed method can be implemented in the industrial environment for the automation of leather inspection process.


2012 ◽  
Vol 610-613 ◽  
pp. 3606-3611
Author(s):  
Ling Ling Zhang ◽  
Ge Ying Lai ◽  
Xiang Gui Zeng ◽  
Fa Zhao Yi

According to the problem that the classification result of shrub and forest land was easy to confuse when used spectrum of Advanced Land Image (ALI) to classify. This paper used the Meijiang River watershed as the study area. Used the Principal Component Analysis (PCA) to reduce dimension, taken the Contrast, Second moment, Mean and Dissimilarity as the texture values, and extracted the texture by Gray level co-occurrence matrix (GLCM). The texture features extracted from different window sizes were used the Maximum likelihood method to classify, and chosen the texture features extracted by the most suitable window size to join the classification. The research result shows that the texture features extracted by window size of 11×11 can distinguish well the two easily ground objects; moreover, the overall accuracy of classification used texture and spectrum features reached to 87.55%, which is 4.4% higher than the classification with spectrum.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1937 ◽  
Author(s):  
Subrata Bhattacharjee ◽  
Cho-Hee Kim ◽  
Hyeon-Gyun Park ◽  
Deekshitha Prakash ◽  
Nuwan Madusanka ◽  
...  

Microscopic biopsy images are coloured in nature because pathologists use the haematoxylin and eosin chemical colour dyes for biopsy examinations. In this study, biopsy images are used for histological grading and the analysis of benign and malignant prostate tissues. The following PCa grades are analysed in the present study: benign, grade 3, grade 4, and grade 5. Biopsy imaging has become increasingly important for the clinical assessment of PCa. In order to analyse and classify the histological grades of prostate carcinomas, pixel-based colour moment descriptor (PCMD) and gray-level co-occurrence matrix (GLCM) methods were used to extract the most significant features for multilayer perceptron (MLP) neural network classification. Haar wavelet transformation was carried out to extract GLCM texture features, and colour features were extracted from RGB (red/green/blue) colour images of prostate tissues. The MANOVA statistical test was performed to select significant features based on F-values and P-values using the R programming language. We obtained an average highest accuracy of 92.7% using level-1 wavelet texture and colour features. The MLP classifier performed well, and our study shows promising results based on multi-feature classification of histological sections of prostate carcinomas.


Author(s):  
Faeze Kiani

Texture, color, and shape are the three main components that the human visual brain uses to identify or identify environments and objects. Therefore, tissue classification has been considered by many scientific researchers in the last decade. The texture features can be used in many different vision and machine learning problems. As of now, various methods have been proposed for classifying tissues. In all methods, the accuracy of the classification is a major challenge that needs to be improved. This article presents a new method based on a combination of two efficient tissue descriptors, the co-occurrence matrix and local ternary patterns (LTP). First, the local binary pattern and LTP are performed to extract information from the local tissue. In the next step, a subset of statistical properties is extracted from the gray surface concurrency matrices. Finally, the interconnected features are used to teach classification. Performance is evaluated for accuracy on the Brodatz reference data set. The experimental results show that the proposed method offers a higher degree of classification compared to some advanced methods.


Sign in / Sign up

Export Citation Format

Share Document