scholarly journals Comparison of Absorbed and Intercepted Fractions of PAR for Individual Trees Based on Radiative Transfer Model Simulations

2021 ◽  
Vol 13 (6) ◽  
pp. 1069
Author(s):  
Wojciech Wojnowski ◽  
Shanshan Wei ◽  
Wenjuan Li ◽  
Tiangang Yin ◽  
Xian-Xiang Li ◽  
...  

The fraction of absorbed photosynthetically active radiation (fAPAR) is a key parameter for estimating the gross primary production (GPP) of trees. For continuous, dense forest canopies, fAPAR, is often equated with the intercepted fraction, fIPAR. This assumption is not valid for individual trees in urban environments or parkland settings where the canopy is sparse and there are well-defined tree crown boundaries. Here, the distinction between fAPAR and fIPAR can be strongly influenced by the background and large illumination variations due to multi-scattering and shadows of buildings. This study investigates the radiative budget of PAR bands using a coupled leaf-canopy radiative transfer model (PROSPECT-DART), considering a suite of tropical tree species over a wide range of assumed leaf chlorophyll contents. The analyses simulate hyperspectral images (5 nm bandwidth) of individual tree crowns for the selected background (concrete vs. grass) and illumination conditions. We then use an artificial neural network-based method to partition sunlit vs. shaded leaves within each crown, as the latter have lower fAPAR and fIPAR values. Our results show fAPAR of sunlit leaves decreases with the ratio of diffuse to direct scene irradiance (SKYL), while SKYL has minimal influence for shaded leaves. Both fAPAR and fIPAR decrease at more oblique solar zenith angles (SZA). Higher values of fAPAR and fIPAR occur with concrete backgrounds and the influence of the background is larger at higher diffuse ratio and solar zenith angles. The results show that fIPAR is typically 6–9% higher than fAPAR, and up to 14% higher for sunlit leaves with a concrete background at SKYL = 0. The differences between the fIPAR and fAPAR also depend on the health condition of the leaves, such as chlorophyll content. This study can improve the understanding of urban individual trees fAPAR/fIPAR and facilitate the development of protocols for fAPAR field measurements.

2018 ◽  
Vol 10 (10) ◽  
pp. 1632 ◽  
Author(s):  
Bin Yang ◽  
Yuri Knyazikhin ◽  
Donghui Xie ◽  
Haimeng Zhao ◽  
Junqiang Zhang ◽  
...  

Interpreting remotely-sensed data requires realistic, but simple, models of radiative transfer that occurs within a vegetation canopy. In this paper, an improved version of the stochastic radiative transfer model (SRTM) is proposed by assuming that all photons that have not been specularly reflected enter the leaf interior. The contribution of leaf specular reflection is considered by modifying leaf scattering phase function using Fresnel reflectance. The canopy bidirectional reflectance factor (BRF) estimated from this model is evaluated through comparisons with field-measured maize BRF. The result shows that accounting for leaf specular reflection can provide better performance than that when leaf specular reflection is neglected over a wide range of view zenith angles. The improved version of the SRTM is further adopted to investigate the influence of leaf specular reflection on the canopy radiative regime, with emphases on vertical profiles of mean radiation flux density, canopy absorptance, BRF, and normalized difference vegetation index (NDVI). It is demonstrated that accounting for leaf specular reflection can increase leaf albedo, which consequently increases canopy mean upward/downward mean radiation flux density and canopy nadir BRF and decreases canopy absorptance and canopy nadir NDVI when leaf angles are spherically distributed. The influence is greater for downward/upward radiation flux densities and canopy nadir BRF than that for canopy absorptance and NDVI. The results provide knowledge of leaf specular reflection and canopy radiative regime, and are helpful for forward reflectance simulations and backward inversions. Moreover, polarization measurements are suggested for studies of leaf specular reflection, as leaf specular reflection is closely related to the canopy polarization.


2014 ◽  
Vol 18 (2) ◽  
pp. 5-9 ◽  
Author(s):  
Anna M. Jarocińska

Abstract Natural vegetation is complex and its reflectance is not easy to model. The aim of this study was to adjust the Radiative Transfer Model parameters for modelling the reflectance of heterogeneous meadows and evaluate its accuracy dependent on the vegetation characteristics. PROSAIL input parameters and reference spectra were collected during field measurements. Two different datasets were created: in the first, the input parameters were modelled using only field measurements; in the second, three input parameters were adjusted to minimize the differences between modelled and measured spectra. Reflectance was modelled using two datasets and then verified based on field reflectance using the RMSE. The average RMSE for the first dataset was equal to 0.1058, the second was 0.0362. The accuracy of the simulated spectra was analysed dependent on the value of the biophysical parameters. Better results were obtained for meadows with higher biomass value, greater LAI and lower water content.


2018 ◽  
Vol 75 (7) ◽  
pp. 2217-2233 ◽  
Author(s):  
Guanglin Tang ◽  
Ping Yang ◽  
George W. Kattawar ◽  
Xianglei Huang ◽  
Eli J. Mlawer ◽  
...  

Abstract Cloud longwave scattering is generally neglected in general circulation models (GCMs), but it plays a significant and highly uncertain role in the atmospheric energy budget as demonstrated in recent studies. To reduce the errors caused by neglecting cloud longwave scattering, two new radiance adjustment methods are developed that retain the computational efficiency of broadband radiative transfer simulations. In particular, two existing scaling methods and the two new adjustment methods are implemented in the Rapid Radiative Transfer Model (RRTM). The results are then compared with those based on the Discrete Ordinate Radiative Transfer model (DISORT) that explicitly accounts for multiple scattering by clouds. The two scaling methods are shown to improve the accuracy of radiative transfer simulations for optically thin clouds but not effectively for optically thick clouds. However, the adjustment methods reduce computational errors over a wide range, from optically thin to thick clouds. With the adjustment methods, the errors resulting from neglecting cloud longwave scattering are reduced to less than 2 W m−2 for the upward irradiance at the top of the atmosphere and less than 0.5 W m−2 for the surface downward irradiance. The adjustment schemes prove to be more accurate and efficient than a four-stream approximation that explicitly accounts for multiple scattering. The neglect of cloud longwave scattering results in an underestimate of the surface downward irradiance (cooling effect), but the errors are almost eliminated by the adjustment methods (warming effect).


2005 ◽  
Vol 44 (6) ◽  
pp. 789-803 ◽  
Author(s):  
Jordi Badosa ◽  
Josep-Abel González ◽  
Josep Calbó ◽  
Michiel van Weele ◽  
Richard L. McKenzie

Abstract To perform a climatic analysis of the annual UV index (UVI) variations in Catalonia, Spain (northeast of the Iberian Peninsula), a new simple parameterization scheme is presented based on a multilayer radiative transfer model. The parameterization performs fast UVI calculations for a wide range of cloudless and snow-free situations and can be applied anywhere. The following parameters are considered: solar zenith angle, total ozone column, altitude, aerosol optical depth, and single-scattering albedo. A sensitivity analysis is presented to justify this choice with special attention to aerosol information. Comparisons with the base model show good agreement, most of all for the most common cases, giving an absolute error within ±0.2 in the UVI for a wide range of cases considered. Two tests are done to show the performance of the parameterization against UVI measurements. One uses data from a high-quality spectroradiometer from Lauder, New Zealand [45.04°S, 169.684°E, 370 m above mean sea level (MSL)], where there is a low presence of aerosols. The other uses data from a Robertson–Berger-type meter from Girona, Spain (41.97°N, 2.82°E, 100 m MSL), where there is more aerosol load and where it has been possible to study the effect of aerosol information on the model versus measurement comparison. The parameterization is applied to a climatic analysis of the annual UVI variation in Catalonia, showing the contributions of solar zenith angle, ozone, and aerosols. High-resolution seasonal maps of typical UV index values in Catalonia are presented.


2012 ◽  
Vol 5 (2) ◽  
pp. 2221-2271
Author(s):  
P. Liebing ◽  
K. Bramstedt ◽  
S. Noël ◽  
V. Rozanov ◽  
H. Bovensmann ◽  
...  

Abstract. SCIAMACHY is a passive imaging spectrometer onboard ENVISAT, designed to obtain trace gas abundances from measured radiances and irradiances in the UV to SWIR range in nadir, limb and occultation viewing modes. Its grating spectrometer introduces a substantial sensitivity to the polarization of the incoming light with nonnegligible effects on the radiometric calibration. To be able to correct for the polarization sensitivity, SCIAMACHY utilizes broadband Polarization Measurement Devices (PMDs). While for the nadir viewing mode the measured atmospheric polarization has been validated against POLDER data (Tilstra and Stammes, 2007, 2010), a similar validation study regarding the limb viewing mode has not yet been performed. This paper aims at an assessment of the quality of the SCIAMACHY limb polarization data. Since limb polarization measurements by other air- or spaceborne instruments in the spectral range of SCIAMACHY are not available, a comparison with radiative transfer simulations by SCIATRAN V3.1(Rozanov et al., 2012) using a wide range of atmospheric parameters is performed. SCIATRAN is a vector radiative transfer model (VRTM) capable of performing calculations of the multiply scattered radiance in a~spherically symmetric atmosphere. The study shows that the limb polarization data exhibit a large systematic bias which is decreasing with wavelength. The most likely reason for this bias is an instrumental phase shift which changes the relative contributions of different Stokes vector components to the PMD signal as compared to on-ground calibration measurements. It is also shown that it is in principle feasible to recalibrate the polarization sensitivity using the in-flight data and the VRTM simulations, enabling also the monitoring of its degradation. Together with an optimization of the algorithm used to calculate the in-flight polarization data an improved polarization correction can increase the radiometric accuracy of SCIAMACHY limb radiance spectra substantially.


2013 ◽  
Vol 6 (6) ◽  
pp. 1503-1520 ◽  
Author(s):  
P. Liebing ◽  
K. Bramstedt ◽  
S. Noël ◽  
V. Rozanov ◽  
H. Bovensmann ◽  
...  

Abstract. SCIAMACHY is a passive imaging spectrometer onboard ENVISAT designed to obtain trace gas abundances from measured radiances and irradiances in the UV to SWIR range in nadir-, limb- and occultation-viewing modes. Its grating spectrometer introduces a substantial sensitivity to the polarization of the incoming light with nonnegligible effects on the radiometric calibration. To be able to correct for the polarization sensitivity, SCIAMACHY utilizes broadband Polarization Measurement Devices (PMDs). While for the nadir-viewing mode the measured atmospheric polarization has been validated against POLDER data (Tilstra and Stammes, 2007, 2010), a similar validation study regarding the limb-viewing mode has not yet been performed. This paper aims at an assessment of the quality of the SCIAMACHY limb polarization data. Since limb polarization measurements by other air/spaceborne instruments in the spectral range of SCIAMACHY are not available, a comparison with radiative transfer simulations by SCIATRAN V3.1 (Rozanov et al., 2013) using a wide range of atmospheric parameters is performed. SCIATRAN is a vector radiative transfer model (VRTM) capable of performing calculations of the multiply scattered radiance in a spherically symmetric atmosphere. The study shows that the limb polarization data exhibit a large time-dependent bias that decreases with wavelength. Possible reasons for this bias are a still unknown combination of insufficient accuracy or inconsistencies of the on-ground calibration data, scan mirror degradation and stress induced changes of the polarization response of components inside the optical bench of the instrument. It is shown that it should in principle be feasible to recalibrate the effective polarization sensitivity of the instrument using the in-flight data and VRTM simulations.


2019 ◽  
Vol 624 ◽  
pp. A7 ◽  
Author(s):  
M. Villenave ◽  
M. Benisty ◽  
W. R. F. Dent ◽  
F. Ménard ◽  
A. Garufi ◽  
...  

Context. The mechanisms governing the opening of cavities in transition disks are not fully understood. Several processes have been proposed, but their occurrence rate is still unknown. Aims. We present spatially resolved observations of two transition disks, and aim at constraining their vertical and radial structure using multiwavelength observations that probe different regions of the disks and can help understanding the origin of the cavities. Methods. We have obtained near-infrared scattered light observations with VLT/SPHERE of the transition disks 2MASS J16083070-3828268 (J1608) and RXJ1852.3-3700 (J1852), located in the Lupus and Corona Australis star-forming regions respectively. We complement our datasets with archival ALMA observations, and with unresolved photometric observations covering a wide range of wavelengths. We performed radiative transfer modeling to analyze the morphology of the disks, and then compare the results with a sample of 20 other transition disks observed with both SPHERE and ALMA. Results. We detect scattered light in J1608 and J1852 up to a radius of 0.54′′ and 0.4′′ respectively. The image of J1608 reveals a very inclined disk (i ~ 74°), with two bright lobes and a large cavity. We also marginally detect the scattering surface from the rear-facing side of the disk. J1852 shows an inner ring extending beyond the coronagraphic radius up to 15 au, a gap and a second ring at 42 au. Our radiative transfer model of J1608 indicates that the millimeter-sized grains are less extended vertically and radially than the micron-sized grains, indicating advanced settling and radial drift. We find good agreement with the observations of J1852 with a similar model, but due to the low inclination of the system, the model remains partly degenerate. The analysis of 22 transition disks shows that, in general, the cavities observed in scattered light are smaller than the ones detected at millimeter wavelengths. Conclusions. The analysis of a sample of transition disks indicates that the small grains, well coupled to the gas, can flow inward of the region where millimeter grains are trapped. While 15 out of the 22 cavities in our sample could be explained by a planet of less than 13 Jupiter masses, the others either require the presence of a more massive companion or of several low-mass planets.


2006 ◽  
Vol 45 (10) ◽  
pp. 1388-1402 ◽  
Author(s):  
Andrew K. Heidinger ◽  
Christopher O’Dell ◽  
Ralf Bennartz ◽  
Thomas Greenwald

Abstract This study, the first part of a two-part series, develops the method of “successive orders of interaction” (SOI) for a computationally efficient and accurate solution for radiative transfer in the microwave spectral region. The SOI method is an iterative approximation to the traditional adding and doubling method for radiative transfer. Results indicate that the approximations made in the SOI method are accurate for atmospheric layers with scattering properties typical of those in the infrared and microwave regions. In addition, an acceleration technique is demonstrated that extends the applicability of the SOI approach to atmospheres with greater amounts of scattering. A comparison of the SOI model with a full Monte Carlo model using the atmospheric profiles given by Smith et al. was used to determine the optimal parameters for the simulation of microwave top-of-atmosphere radiances. This analysis indicated that a four-stream model with a maximum initial-layer optical thickness of approximately 0.01 was optimal. In the second part of this series, the accuracies of the SOI model and its adjoint are demonstrated over a wide range of microwave remote sensing scenarios.


2006 ◽  
Vol 45 (10) ◽  
pp. 1403-1413 ◽  
Author(s):  
Christopher W. O’Dell ◽  
Andrew K. Heidinger ◽  
Thomas Greenwald ◽  
Peter Bauer ◽  
Ralf Bennartz

Abstract Radiative transfer models for scattering atmospheres that are accurate yet computationally efficient are required for many applications, such as data assimilation in numerical weather prediction. The successive-order-of-interaction (SOI) model is shown to satisfy these demands under a wide range of conditions. In particular, the model has an accuracy typically much better than 1 K for most microwave and submillimeter cases in precipitating atmospheres. Its speed is found to be comparable to or faster than the commonly used though less accurate Eddington model. An adjoint has been written for the model, and so Jacobian sensitivities can be quickly calculated. In addition to a conventional error assessment, the correlation between errors in different microwave channels is also characterized. These factors combine to make the SOI model an appealing candidate for many demanding applications, including data assimilation and optimal estimation, from microwave to thermal infrared wavelengths.


2017 ◽  
Vol 18 (2) ◽  
pp. 555-572 ◽  
Author(s):  
K. N. Musselman ◽  
J. W. Pomeroy

AbstractA measurement and modeling campaign evaluated variations in tree temperatures with solar exposure at the edge of a forest clearing and how the resulting longwave radiation contributed to spatial patterns of snowmelt energy surrounding an individual tree. Compared to measurements, both a one-dimensional (1D) energy-balance model and a two-dimensional (2D) radial trunk heat transfer model that simulated trunk surface temperatures and thermal inertia performed well (RMSE and biases better than 1.7° and ±0.4°C). The 2D model that resolved a thin bark layer better simulated daytime temperature spikes. Measurements and models agreed that trunk surfaces returned to ambient air temperature values near sunset. Canopy needle temperatures modeled with a 1D energy-balance approach were within the range of measurements. The radiative transfer model simulated substantial tree-contributed snow surface longwave irradiance to a distance of approximately one-half the tree height, with higher values on the sun-exposed sides of the tree. Trunks had very localized and substantially lower longwave energy influence on snowmelt compared to that of the canopy. The temperature and radiative transfer models provide the spatially detailed information needed to develop scaling relationships for estimating net radiation for snowmelt in sparse and discontinuous forest canopies.


Sign in / Sign up

Export Citation Format

Share Document