scholarly journals MixChannel: Advanced Augmentation for Multispectral Satellite Images

2021 ◽  
Vol 13 (11) ◽  
pp. 2181
Author(s):  
Svetlana Illarionova  ◽  
Sergey Nesteruk  ◽  
Dmitrii Shadrin ◽  
Vladimir Ignatiev  ◽  
Maria Pukalchik  ◽  
...  

Usage of multispectral satellite imaging data opens vast possibilities for monitoring and quantitatively assessing properties or objects of interest on a global scale. Machine learning and computer vision (CV) approaches show themselves as promising tools for automatizing satellite image analysis. However, there are limitations in using CV for satellite data. Mainly, the crucial one is the amount of data available for model training. This paper presents a novel image augmentation approach called MixChannel that helps to address this limitation and improve the accuracy of solving segmentation and classification tasks with multispectral satellite images. The core idea is to utilize the fact that there is usually more than one image for each location in remote sensing tasks, and this extra data can be mixed to achieve the more robust performance of the trained models. The proposed approach substitutes some channels of the original training image with channels from other images of the exact location to mix auxiliary data. This augmentation technique preserves the spatial features of the original image and adds natural color variability with some probability. We also show an efficient algorithm to tune channel substitution probabilities. We report that the MixChannel image augmentation method provides a noticeable increase in performance of all the considered models in the studied forest types classification problem.

2018 ◽  
Vol 10 (10) ◽  
pp. 1555 ◽  
Author(s):  
Caio Fongaro ◽  
José Demattê ◽  
Rodnei Rizzo ◽  
José Lucas Safanelli ◽  
Wanderson Mendes ◽  
...  

Soil mapping demands large-scale surveys that are costly and time consuming. It is necessary to identify strategies with reduced costs to obtain detailed information for soil mapping. We aimed to compare multispectral satellite image and relief parameters for the quantification and mapping of clay and sand contents. The Temporal Synthetic Spectral (TESS) reflectance and Synthetic Soil Image (SYSI) approaches were used to identify and characterize texture spectral signatures at the image level. Soil samples were collected (0–20 cm depth, 919 points) from an area of 14,614 km2 in Brazil for reference and model calibration. We compared different prediction approaches: (a) TESS and SYSI; (b) Relief-Derived Covariates (RDC); and (c) SYSI plus RDC. The TESS method produced highly similar behavior to the laboratory convolved data. The sandy textural class showed a greater increase in average spectral reflectance from Band 1 to 7 compared with the clayey class. The prediction using SYSI produced a better result for clay (R2 = 0.83; RMSE = 65.0 g kg−1) and sand (R2 = 0.86; RMSE = 79.9 g kg−1). Multispectral satellite images were more stable for the identification of soil properties than relief parameters.


Sci ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 10
Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Giorgos Mallinis ◽  
Charalampos Georgiadis

Αbstract: To date, countless satellite image fusions have been made, mainly with panchromatic spatial resolution to a multispectral image ratio of 1/4, fewer fusions with lower ratios, and relatively recently fusions with much higher spatial resolution ratios have been published. Apart from this, there is a small number of publications studying the fusion of aerial photographs with satellite images, with the year of image acquisition varying and the dates of acquisition not mentioned. In addition, in these publications, either no quantitative controls are performed on the composite images produced, or the aerial photographs are recent and colorful and only the RGB bands of the satellite images are used for data fusion purposes. The objective of this paper is the study of the addition of multispectral information from satellite images to black and white aerial photographs of the 80s decade (1980–1990) with small difference (just a few days) in their image acquisition date, the same year and season. Quantitative tests are performed in two case studies and the results are encouraging, as the accuracy of the classification of the features and objects of the Earth’s surface is improved and the automatic digital extraction of their form and shape from the archived aerial photographs is now allowed. This opens up a new field of use for the black and white aerial photographs and archived multispectral satellite images of the same period in a variety of applications, such as the temporal changes of cities, forests and archaeological sites.


Author(s):  
A. Saglam ◽  
N. A. Baykan

<p><strong>Abstract.</strong> The classification problem in the image processing field is an important challenge, so that in the process image pixels are separated into previously determined classes according to their features. This process provides a meaningful knowledge about an area thanks to the satellite images. Satellite images are digital images obtained from a satellite vehicle by the way scanning the interest areas with some specified sensors. These sensors provide the specific radiometric and spatial information about the surface of the object. This information allows the researchers to obtain reliable classification results to be used to solve some real life problems such as object extraction, mapping, recognition, navigation and disaster management. Linear Discriminant Analysis (LDA) is a supervised method that reduces the dimensions of data in respect to the maximum discrimination of the elements of the data. This method also transfers the data to a new coordinate space in which the discriminant features of the classes are highest using the objection data provided manually. In this work, we consider the classes as if the satellite images have two classes; one is foreground and the other is background. The true classes such as roofs, roads, buildings, spaces and trees are treated sequentially as the foreground. The area outside the foreground class is treated as the background. The one dimensional reduced feature values of pixels, such that each value is reduced according to the binary classification of each class, are considered as membership values to the classes. In this way, each pixel has membership values for each of the classes. Finally, the pixels are classified according to the membership values. We used the ISPRS WG III/4 2D Semantic Labeling Benchmark (Vaihingen) images includes the ground truths and give the accuracy result values for each class.</p>


Author(s):  
V E Dementyev ◽  
D S Kondratyev

One of the important tasks facing the regional authorities is to monitor the condition of roads and power lines. In the Ulyanovsk region more than 8 thousand km of power lines and more than 9 thousand km of roads (including rural). A significant part of these facilities is located outside the settlements in places with medium and low availability. In many such places there is a problem of uncontrolled forest overgrowth. This work is devoted to solving the problem of automated satellite monitoring of such areas. For this purpose, it is proposed to use a modified convolutional neural network that processes time sequences of multispectral satellite images and allows to allocate territories occupied by forest and undergrowth with high accuracy. This approach allows us to assess the dynamics of overgrowth of the territory and perform the appropriate forecast with sufficient accuracy for practice.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 6
Author(s):  
K. Radhika ◽  
S. Varadarajan

Remote sensing images are an important source of information regarding the Earth surface. For many applications like geology, urban planning, forest and land cover/land use, the underlying information from such images is needed. Extraction of this information is usually achieved through a classification process which is one of the most powerful tools in digital image processing. Good classifier is required to extract the information in satellite images. Latest methods used for classification of pixels in multispectral satellite images are supervised classifiers such as Support Vector Machines (SVM), k-Nearest Number (K-NN) and Maximum Likelihood (ML) classifier. SVM may be one-class SVM or multi-class SVM. K-NN is simple technique in high-dimensional feature space. In ML classifier, classification is based on the maximum likelihood of the pixel. The performance metrics for these classifiers are calculated and compared. Totally 200 points have been considered for validation purpose.


Sci ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 36
Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Giorgos Mallinis ◽  
Charalampos Georgiadis

To date, countless satellite image fusions have been made, mainly with panchromatic spatial resolution to a multispectral image ratio of 1/4, fewer fusions with lower ratios, and relatively recently fusions with much higher spatial resolution ratios have been published. Apart from this, there is a small number of publications studying the fusion of aerial photographs with satellite images, with the year of image acquisition varying and the dates of acquisition not mentioned. In addition, in these publications, either no quantitative controls are performed on the composite images produced, or the aerial photographs are recent and colorful and only the RGB bands of the satellite images are used for data fusion purposes. The objective of this paper is the study of the addition of multispectral information from satellite images to black and white aerial photographs of the 2nd half of the 20th century (1950–1999) with small difference (just a few days) in their image acquisition date, the same year and season. Quantitative tests are performed in two case studies and the results are encouraging, as the accuracy of the classification of the features and objects of the Earth’s surface is improved and the automatic digital extraction of their form and shape from the archived aerial photographs is now allowed. This opens up a new field of use for the black and white aerial photographs and archived multispectral satellite images of the same period in a variety of applications, such as the temporal changes of cities, forests and archaeological sites.


Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 29
Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Giorgos Mallinis ◽  
Charalampos Georgiadis

To date, countless satellite image fusions have been made, mainly with panchromatic spatial resolution to a multispectral image ratio of 1/4, fewer fusions with lower ratios, and relatively recently fusions with much higher spatial resolution ratios have been published. Apart from this, there is a small number of publications studying the fusion of aerial photographs with satellite images, with the year of image acquisition varying and the dates of acquisition not mentioned. In addition, in these publications, either no quantitative controls are performed on the composite images produced, or the aerial photographs are recent and colorful and only the RGB bands of the satellite images are used for data fusion purposes. The objective of this paper is the study of the addition of multispectral information from satellite images to black and white aerial photographs of the 80s decade (1980–1990) with small difference (just a few days) in their image acquisition date, the same year and season. Quantitative tests are performed in two case studies and the results are encouraging, as the accuracy of the classification of the features and objects of the Earth’s surface is improved and the automatic digital extraction of their form and shape from the archived aerial photographs is now allowed. This opens up a new field of use for the black and white aerial photographs and archived multispectral satellite images of the same period in a variety of applications, such as the temporal changes of cities, forests and archaeological sites.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1071
Author(s):  
Lucia Billeci ◽  
Asia Badolato ◽  
Lorenzo Bachi ◽  
Alessandro Tonacci

Alzheimer’s disease is notoriously the most common cause of dementia in the elderly, affecting an increasing number of people. Although widespread, its causes and progression modalities are complex and still not fully understood. Through neuroimaging techniques, such as diffusion Magnetic Resonance (MR), more sophisticated and specific studies of the disease can be performed, offering a valuable tool for both its diagnosis and early detection. However, processing large quantities of medical images is not an easy task, and researchers have turned their attention towards machine learning, a set of computer algorithms that automatically adapt their output towards the intended goal. In this paper, a systematic review of recent machine learning applications on diffusion tensor imaging studies of Alzheimer’s disease is presented, highlighting the fundamental aspects of each work and reporting their performance score. A few examined studies also include mild cognitive impairment in the classification problem, while others combine diffusion data with other sources, like structural magnetic resonance imaging (MRI) (multimodal analysis). The findings of the retrieved works suggest a promising role for machine learning in evaluating effective classification features, like fractional anisotropy, and in possibly performing on different image modalities with higher accuracy.


2021 ◽  
Vol 1 (1) ◽  
pp. 8-15
Author(s):  
Pier Matteo Barone ◽  
Rosa Maria Di Maggio ◽  
Silvia Mesturini

Despite widespread concern over missing persons, there has always been little clarity on what the word “missing” means. Although the category of young runaways is, indeed, an important cluster, other popular concepts related to disappearances describe a portion of missing persons. Thus, the following question persists: What exactly does “missing” mean? In this brief communication, we would like to open a discussion about the social phenomenon of missing persons and the consequent deployment of people and techniques to find those persons. In particular, the benefits of some forensic geoarchaeological approaches that are not yet fully standardized will be highlighted, such as geographic profiling and the use of multispectral satellite images, in order to provide materials for future searching protocols.


2021 ◽  
Vol 13 (16) ◽  
pp. 3062
Author(s):  
Guo Zhang ◽  
Boyang Jiang ◽  
Taoyang Wang ◽  
Yuanxin Ye ◽  
Xin Li

To ensure the accuracy of large-scale optical stereo image bundle block adjustment, it is necessary to provide well-distributed ground control points (GCPs) with high accuracy. However, it is difficult to acquire control points through field measurements outside the country. Considering the high planimetric accuracy of spaceborne synthetic aperture radar (SAR) images and the high elevation accuracy of satellite-based laser altimetry data, this paper proposes an adjustment method that combines both as control sources, which can be independent from GCPs. Firstly, the SAR digital orthophoto map (DOM)-based planar control points (PCPs) acquisition is realized by multimodal matching, then the laser altimetry data are filtered to obtain laser altimetry points (LAPs), and finally the optical stereo images’ combined adjustment is conducted. The experimental results of Ziyuan-3 (ZY-3) images prove that this method can achieve an accuracy of 7 m in plane and 3 m in elevation after adjustment without relying on GCPs, which lays the technical foundation for a global-scale satellite image process.


Sign in / Sign up

Export Citation Format

Share Document