scholarly journals BDS-3/Galileo Time and Frequency Transfer with Quad-Frequency Precise Point Positioning

2021 ◽  
Vol 13 (14) ◽  
pp. 2704
Author(s):  
Yulong Ge ◽  
Xinyun Cao ◽  
Fei Shen ◽  
Xuhai Yang ◽  
Shengli Wang

In this work, quad-frequency precise point positioning (PPP) time and frequency transfer methods using Galileo E1/E5a/E5b/E5 and BDS-3 B1I/B3I/B1C/B2a observations were proposed with corresponding mathematical models. In addition, the traditional dual-frequency (BDS-3 B1I/B3I and Galileo E1/E5a) ionospheric-free (IF) model was also described and tested for comparison. To assess the proposed method for time transfer, datasets selected from timing labs were utilized and tested. Moreover, the number of Galileo or BDS-3 satellites, pseudorange residuals, positioning accuracy and tropospheric delay at receiver end were all analyzed. The results showed that the proposed quad-frequency BDS-3 or Galileo PPP models could be used to time transfer, due to stability and accuracy identical to that of dual-frequency IF model. Furthermore, the quad-frequency models can provide potential for enhancing the reliability and redundancy compared to the dual-frequency time transfer method.

2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Gérard Petit ◽  
Zhiheng Jiang

We discuss the use of some new time transfer techniques for computing TAI time links. Precise point positioning (PPP) uses GPS dual frequency carrier phase and code measurements to compute the link between a local clock and a reference time scale with the precision of the carrier phase and the accuracy of the code. The time link between any two stations can then be computed by a simple difference. We show that this technique is well adapted and has better short-term stability than other techniques used in TAI. We present a method of combining PPP and two-way time transfer that takes advantage of the qualities of each technique, and shows that it would bring significant improvement to TAI links.


GEOMATICA ◽  
2016 ◽  
Vol 70 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Mahmoud Abd Rabbou ◽  
Ahmed El-Rabbany

Single-frequency precise point positioning (PPP) presents a cost-effective positioning technique for a large number of users. However, it possesses low positioning accuracy and convergence time compared with the dual-frequency PPP. Single-frequency PPP commonly employs GPS satellite systems that suffer from poor satellite geometry, especially in dense urban areas. We develop a new single-frequency PPP model that combines the observations of current GNSS constellations, including GPS, GLONASS, Galileo and Beidou. The MGEX IGS final precise products are utilized to account for the orbital and clock errors, while the IGS final global ionospheric maps (GIM) model is used to correct for the ionospheric delay. The GNSS inter-system biases are treated as additional unknowns in the estimation process. The con tri bution of the additional GNSS observations to single-frequency PPP is assessed through solution comparison with its traditional GPS-only counterpart. Various GNSS combinations are considered in the assessment, including GPS/GLONASS, GPS/Galileo, GPS/BeiDou and all-constellation GNSS. It is shown that the additional GNSS observations enhance the PPP solution accuracy and convergence time in comparison with the tra di tional GPS-only solution. Except for stations with a sufficient number of tracked BeiDou satellites, both Galileo and BeiDou have marginal effects on the positioning accuracy due to their limited number of satel lites. However, for stations with a sufficient number of visible BeiDou satellites, an average of 40% PPP accuracy improvement is obtained. The major contribution to the PPP accuracy enhancement is obtained from GLONASS satellite observations.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6447
Author(s):  
Hongyu Zhu ◽  
Linyuan Xia ◽  
Dongjin Wu ◽  
Jingchao Xia ◽  
Qianxia Li

The emergence of dual frequency global navigation satellite system (GNSS) chip actively promotes the progress of precise point positioning (PPP) technology in Android smartphones. However, some characteristics of GNSS signals on current smartphones still adversely affect the positioning accuracy of multi-GNSS PPP. In order to reduce the adverse effects on positioning, this paper takes Huawei Mate30 as the experimental object and presents the analysis of multi-GNSS observations from the aspects of carrier-to-noise ratio, cycle slip, gradual accumulation of phase error, and pseudorange residual. Accordingly, we establish a multi-GNSS PPP mathematical model that is more suitable for GNSS observations from a smartphone. The stochastic model is composed of GNSS step function variances depending on carrier-to-noise ratio, and the robust Kalman filter is applied to parameter estimation. The multi-GNSS experimental results show that the proposed PPP method can significantly reduce the effect of poor satellite signal quality on positioning accuracy. Compared with the conventional PPP model, the root mean square (RMS) of GPS/BeiDou (BDS)/GLONASS static PPP horizontal and vertical errors in the initial 10 min decreased by 23.71% and 62.06%, respectively, and the horizontal positioning accuracy reached 10 cm within 100 min. Meanwhile, the kinematic PPP maximum three-dimensional positioning error of GPS/BDS/GLONASS decreased from 16.543 to 10.317 m.


2021 ◽  
Vol 13 (18) ◽  
pp. 3758
Author(s):  
Wang Gao ◽  
Qing Zhao ◽  
Xiaolin Meng ◽  
Shuguo Pan

Precise point positioning (PPP) with ambiguity resolution (AR) can improve positioning accuracy and reliability. The narrow-lane (NL) AR solution can reach centimeter-level accuracy but there is a certain initialization time. In contrast, extra-wide-lane (EWL) or wide-lane (WL) ambiguity can be fixed instantaneously. However, due to the limited correction accuracy of the empirical atmospheric model, the positioning accuracy is only a few decimeters. In order to further improve the real-time performance of PPP while ensuring accuracy, we developed a multi-system multi-frequency uncombined PPP single-epoch EWL/WL/NL AR method with regional atmosphere modelling. In the proposed method, the precise atmosphere, including zenith wet-troposphere delay (ZWD) and the slant ionosphere, is extracted through multi-frequency stepwise AR, which then is both interpolated and broadcast to users. By adding regional atmosphere constraints, users can achieve single-epoch PPP AR with centimeter-level accuracy. To verify the algorithm, four sets of reference networks with different inter-station distances are used for experiments. With atmosphere constraints, the accuracy of the single-epoch WL solution can be improved from the decimeter level to a few centimeters, with an improvement of more than 90%, and the epoch fix rate can also be improved to varying degrees, especially for the dual-frequency case. Due to the enlarged noise of the EWL combination, its accuracy is at the decimeter level, while the accuracy of the WL/NL solution can reach several centimeters. However, reliable NL ambiguity-fixing tightly relies on atmosphere constraints with sufficiently high accuracy. When the modelling of the atmosphere correction is not accurate enough, the NL AR performance is degraded, although this situation can be improved to a certain extent through the multi-GNSS combination. In contrast, in this case, the WL ambiguity can be successfully fixed and can support the precise positioning with an accuracy of several centimeters.


2020 ◽  
Vol 196 ◽  
pp. 01001
Author(s):  
Anna Yasyukevich ◽  
Semen Syrovatskii ◽  
Yury Yasyukevich

Based on the data from dual-frequency receivers of global navigation satellite systems (GNSS), we analyze the changes in GNSS positioning accuracy during the August 25-26, 2018 strong geomagnetic storm on a global scale. The storm is one of the strongest geomagnetic events of the solar cycle 24. To analyze the positioning quality, we calculated coordinates using the precise point positioning (PPP) method in the kinematic mode. We recorder a significant degradation in the PPP positioning accuracy during the main phase of the storm. The maximum effect is observed in the middle and high latitudes of the US-Atlantic longitude sector. The average PPP error during the storm is shown to exceed ~0.5 m, that is up to 5 times higher than the values typical on quiet days. Areas with increased PPP errors is revealed to correspond to the regions with significant increase in the intensity of total electron content variations of 10–20 min period range. This increase is presumably due to the auroral oval expansion toward middle latitudes.


2020 ◽  
Author(s):  
Faruk Can Durmus ◽  
Bahattin Erdogan

<p>Global Navigation Satellite Systems (GNSS) are effectively used for different applications of Geomatic Engineering. There are lots of model error sources that affect the performance of the point positioning. Especially for the Precise Point Positioning (PPP) technique, which depends on the absolute point positioning, these errors should be modelled since PPP technique utilizes un-differenced and ionosphere-free combinations. Studies about PPP technique show that the effect of tropospheric delay caused by water vapor and dry air in the troposphere, which affects GNSS signals, is an important parameter should be modelled. Total zenith delay consists of both hydrostatic and wet delay. Hydrostatic delay can be accurately estimated by using atmospheric surface pressure and temperature with empirical models. Although there are many empirical models currently used for the determination of the zenith wet delay, the accuracies of these models are inadequate due to the temporal and spatial variation of atmospheric water vapor. Moreover, the tropospheric delay occurs along the path of GNSS signals and the Mapping Functions (MFs) are used to convert the tropospheric signal delay along the zenith direction to the slant direction. In this study, it is aimed to measure the effect of the globally produced MFs as Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), Global Mapping Function (GMF) and Global Pressure Temperature model 2 (GPT2) for GNSS positioning accuracy. Only GPS satellite system has been taken into account. For the analysis it has planned to process approximately 294 permanent stations from Crustal Dynamics Data Information System (CDDIS) archive with Jet Propulsion Laboratory’s GipsyX v1.2 software. In order to reveal the effect of different season the GPS observations in January, April, July and October, 2018 have been obtained. The solutions were derived for different session durations as 2, 4, 6, 8, 12 and 24 hours for each global MFs and root mean square values have been estimated for each session durations. According to the first results that based on the six points, which the ellipsoidal heights of them are between 20 m and 105 m, although the results of north and east components are close to each other; the results of VMF1 are better than other global MFs for up component.</p><p> </p><p><strong>Keywords</strong>: State-of-the-Art Mapping Function, Troposphere, Precise Point Positioning, Accuracy, GipsyX</p>


2019 ◽  
Vol 11 (3) ◽  
pp. 341 ◽  
Author(s):  
Gen Liu ◽  
Xiaohong Zhang ◽  
Pan Li

Compared with the traditional ionospheric-free linear combination precise point positioning (PPP) model, the un-differenced and uncombined (UDUC) PPP model using original observations can keep all the information of the observations and be easily extended to any number of frequencies. However, the current studies about the multi-frequency UDUC-PPP ambiguity resolution (AR) were mainly based on the triple-frequency BeiDou navigation satellite system (BDS) observations or simulated data. Limited by many factors, for example the accuracy of BDS precise orbit and clock products, the advantages of triple-frequency signals to UDUC-PPP AR were not fully exploited. As Galileo constellations have been upgraded by increasing the number of 19 useable satellites, it makes using Galileo satellites to further study the triple-frequency UDUC-PPP ambiguity resolution (AR) possible. In this contribution, we proposed the method of multi-frequency step-by-step ambiguity resolution based on the UDUC-PPP model and gave the reason why the performance of PPP AR can be improved using triple-frequency observations. We used triple-frequency Galileo observations on day of year (DOY) 201, 2018 provided by 166 Multi-GNSS Experiment (MGEX) stations to estimate original uncalibrated phase delays (UPD) on each frequency and to conduct both dual- and triple-frequency UDUC-PPP AR. The performance of UDUC-PPP AR based on post-processing mode was assessed in terms of the time-to-first-fix (TTFF) as well as positioning accuracy with 2-hour observations. It was found that triple-frequency observations were helpful to reduce TTFF and improve the positioning accuracy. The current statistic results showed that triple-frequency PPP-AR reduced the averaged TTFF by 19.6 % and also improved the positioning accuracy by 40.9, 31.2 and 23.6 % in the east, north and up directions respectively, compared with dual-frequency PPP-AR. With an increasing number of Galileo satellites, it is expected that the robustness and accuracy of the triple-frequency UCUD-PPP AR can be improved further.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2593 ◽  
Author(s):  
Abdelsatar Elmezayen ◽  
Ahmed El-Rabbany

The release of the world’s first dual-frequency GPS/Galileo smartphone, Xiaomi mi 8, in 2018 provides an opportunity for high-precision positioning using ultra low-cost sensors. In this research, the GNSS precise point positioning (PPP) accuracy of the Xiaomi mi 8 smartphone is tested in post-processing and real-time modes. Raw dual-frequency observations are collected over two different time windows from both of the Xiaomi mi 8 smartphone and a Trimble R9 geodetic-quality GNSS receiver using a short baseline, due to the lack of a nearby reference station to the observation site. The data sets are first processed in differential modes using Trimble business center (TBC) software in order to provide the reference positioning solution for both of the geodetic receiver and the smartphone. An in-house PPP software is then used to process the collected data in both of post-processing and real-time modes. Precise ephemeris obtained from the multi-GNSS experiment (MGEX) is used for post-processing PPP, while the new NAVCAST real-time GNSS service, Germany, is used for real-time PPP. Additionally, the real-time PPP solution is assessed in both of static and kinematic modes. It is shown that the dual-frequency GNSS smartphone is capable of achieving decimeter-level positioning accuracy, in both of post-processing and real-time PPP modes, respectively. Meter-level positioning accuracy is achieved in the kinematic mode.


2019 ◽  
Vol 11 (3) ◽  
pp. 347 ◽  
Author(s):  
Yulong Ge ◽  
Peipei Dai ◽  
Weijin Qin ◽  
Xuhai Yang ◽  
Feng Zhou ◽  
...  

Thanks to the international GNSS service (IGS), which has provided multi-GNSS precise products, multi-GNSS precise point positioning (PPP) time and frequency transfer has of great interest in the timing community. Currently, multi-GNSS PPP time transfer is not investigated with different precise products. In addition, the correlation of the receiver clock offsets between adjacent epochs has not been studied in multi-GNSS PPP. In this work, multi-GNSS PPP time and frequency with different precise products is first compared in detail. A receiver clock offset model, considering the correlation of the receiver clock offsets between adjacent epochs using an a priori value, is then employed to improve multi-GNSS PPP time and frequency (scheme2). Our numerical analysis clarify how the approach performs for multi-GNSS PPP time and frequency transfer. Based on two commonly used multi-GNSS products and six GNSS stations, three conclusions are obtained straightforwardly. First, the GPS-only, Galileo-only, and multi-GNSS PPP solutions show similar performances using GBM and COD products, while BDS-only PPP using GBM products is better than that using COD products. Second, multi-GNSS time transfer outperforms single GNSS by increasing the number of available satellites and improving the time dilution of precision. For single-system and multi-GNSS PPP with GBM products, the maximum improvement in root mean square (RMS) values for multi-GNSS solutions are up to 7.4%, 94.0%, and 57.3% compared to GPS-only, BDS-only, and Galileo-only solutions, respectively. For stability, the maximum improvement of multi-GNSS is 20.3%, 84%, and 45.4% compared to GPS-only, BDS-only and Galileo-only solutions. Third, our approach contains less noise compared to the solutions with the white noise model, both for the single-system model and the multi-GNSS model. The RMS values of our approach are improved by 37.8–91.9%, 10.5–65.8%, 2.7–43.1%, and 26.6–86.0% for GPS-only, BDS-only, Galileo-only, and multi-GNSS solutions. For frequency stability, the improvement of scheme2 ranges from 0.2 to 51.6%, from 3 to 80.0%, from 0.2 to 70.8%, and from 0.1 to 51.5% for GPS-only, BDS-only, Galileo-only, and multi-GNSS PPP solutions compared to the solutions with the white noise model in the Eurasia links.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2856
Author(s):  
Junping Zou ◽  
Ahao Wang ◽  
Jiexian Wang

High-precision and low-cost single-frequency precise point positioning (SF-PPP) has been attracting more and more attention in numerous global navigation satellite system (GNSS) applications. To provide the precise ionosphere delay and improve the positioning accuracy of the SF-PPP, the dual-frequency receiver, which receives dual-frequency observations, is used. Based on the serviced precise ionosphere delay, which is generated from the dual-frequency observations, the high-precision SF-PPP is realized. To further improve the accuracy of the SF-PPP and shorten its convergence time, the double-differenced (DD) ambiguity resolutions, which are generated from the DD algorithm, are introduced. This method avoids the estimation of fractional cycle bias (FCB) for the SF-PPP ambiguity. Here, we collected data from six stations of Shanghai China which was processed, and the corresponding results were analyzed. The results of the dual-frequency observations enhanced SF-PPP realize centimeter-level positioning. The difference between the results of two stations estimated with dual-frequency observations enhanced SF-PPP were compared with the relative positioning results computed with the DD algorithm. Experimental results showed that the relative positioning accuracy of the DD algorithm is slightly better than that of the dual-frequency observations enhanced SF-PPP. This could be explained by the effect of the float ambiguity resolutions on the positioning accuracy. The data was processed with the proposed method for the introduction of the DD ambiguity into SF-PPP and the results indicated that this method could improve the positioning accuracy and shorten the convergence time of the SF-PPP. The results could further improve the deformation monitoring ability of SF-PPP.


Sign in / Sign up

Export Citation Format

Share Document