scholarly journals Daytime Cloud Detection Algorithm Based on a Multitemporal Dataset for GK-2A Imagery

2021 ◽  
Vol 13 (16) ◽  
pp. 3215
Author(s):  
Soobong Lee ◽  
Jaewan Choi

Cloud detection is an essential and important process in remote sensing when surface information is required for various fields. For this reason, we developed a daytime cloud detection algorithm for GEOstationary KOrea Multi-Purpose SATellite 2A (GEO-KOMPSAT-2A, GK-2A) imagery. For each pixel, the filtering technique using angular variance, which denotes the change in top of atmosphere (TOA) reflectance over time, was applied, and filtering technique by using the minimum TOA reflectance was used to remove remaining cloud pixels. Furthermore, near-infrared (NIR) and normalized difference vegetation index (NDVI) images were applied with dynamic thresholds to improve the accuracy of the cloud detection results. The quantitative results showed that the overall accuracy of proposed cloud detection was 0.88 and 0.92 with Visible Infrared Imaging Radiometer Suite (VIIRS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), respectively, and indicated that the proposed algorithm has good performance in detecting clouds.

2018 ◽  
Vol 10 (9) ◽  
pp. 1375 ◽  
Author(s):  
Carolien Toté ◽  
Else Swinnen ◽  
Sindy Sterckx ◽  
Stefan Adriaensen ◽  
Iskander Benhadj ◽  
...  

PROBA-V (PRoject for On-Board Autonomy–Vegetation) was launched in May-2013 as an operational continuation to the vegetation (VGT) instruments on-board the Système Pour l’Observation de la Terre (SPOT)-4 and -5 satellites. The first reprocessing campaign of the PROBA-V archive from Collection 0 (C0) to Collection 1 (C1) aims at harmonizing the time series, thanks to improved radiometric and geometric calibration and cloud detection. The evaluation of PROBA-V C1 focuses on (i) qualitative and quantitative assessment of the new cloud detection scheme; (ii) quantification of the effect of the reprocessing by comparing C1 to C0; and (iii) evaluation of the spatio-temporal stability of the combined SPOT/VGT and PROBA-V archive through comparison to METOP/advanced very high resolution radiometer (AVHRR). The PROBA-V C1 cloud detection algorithm yields an overall accuracy of 89.0%. Clouds are detected with very few omission errors, but there is an overdetection of clouds over bright surfaces. Stepwise updates to the visible and near infrared (VNIR) absolute calibration in C0 and the application of degradation models to the SWIR calibration in C1 result in sudden changes between C0 and C1 Blue, Red, and NIR TOC reflectance in the first year, and more gradual differences for short-wave infrared (SWIR). Other changes result in some bias between C0 and C1, although the root mean squared difference (RMSD) remains well below 1% for top-of-canopy (TOC) reflectance and below 0.02 for the normalized difference vegetation index (NDVI). Comparison to METOP/AVHRR shows that the recent reprocessing campaigns on SPOT/VGT and PROBA-V have resulted in a more stable combined time series.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 346-353 ◽  
Author(s):  
Francisca López-Granados ◽  
Montse Jurado-Expósito ◽  
Jose M. Peña-Barragán ◽  
Luis García-Torres

Field research was conducted to determine the potential of hyperspectral and multispectral imagery for late-season discrimination and mapping of grass weed infestations in wheat. Differences in reflectance between weed-free wheat and wild oat, canarygrass, and ryegrass were statistically significant in most 25-nm-wide wavebands in the 400- and 900-nm spectrum, mainly due to their differential maturation. Visible (blue, B; green, G; red, R) and near infrared (NIR) wavebands and five vegetation indices: Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), R/B, NIR-R and (R − G)/(R + G), showed potential for discriminating grass weeds and wheat. The efficiency of these wavebands and indices were studied by using color and color-infrared aerial images taken over three naturally infested fields. In StaCruz, areas infested with wild oat and canarygrass patches were discriminated using the indices R, NIR, and NDVI with overall accuracies (OA) of 0.85 to 0.90. In Florida–West, areas infested with wild oat, canarygrass, and ryegrass were discriminated with OA from 0.85 to 0.89. In Florida–East, for the discrimination of the areas infested with wild oat patches, visible wavebands and several vegetation indices provided OA of 0.87 to 0.96. Estimated grass weed area ranged from 56 to 71%, 43 to 47%, and 69 to 80% of the field in the three locations, respectively, with per-class accuracies from 0.87 to 0.94. NDVI was the most efficient vegetation index, with a highly accurate performance in all locations. Our results suggest that mapping grass weed patches in wheat is feasible with high-resolution satellite imagery or aerial photography acquired 2 to 3 wk before crop senescence.


Author(s):  
C. Li ◽  
Y. Zhong ◽  
W. Zhang

Hong Lake is the largest lake in Hubei Province. With the increase of Hong Lake economic activity, the area, spatial location and shape of Hong Lake have changed greatly in the past. In this paper, we used the images, which is from the visible infrared imaging radiometer (VIIRS). First, we selected the images of Hong Lake waters on December 6, 2016 and December 26, 2015. Then we extracted the water bodies by the single-band method, spectral relationship method, normalized difference water index (<i>NDWI</i>) were used, and the effect-s were compared. Second, the images of Hong Lake waters in summer and winter were selected from 2012 to 2016, respectively. Last, The <i>NDWI</i> was used to extract the water body and compared with the MODIS image extraction effect in the same period. As a result of the vegetation around Hong Lake, the water is extracted by <i>NDWI</i> and normalized difference vegetation index (<i>NDVI</i>). It is found that for the VIIRS image, the <i>NDWI</i> is the best in the water extraction of Hong Lake. The <i>NDVI</i> + <i>NDWI</i> method is beneficial to the extraction of water covered with aquatic plants. VIIRS image extraction is better than MODIS image. In addition, from the study of VIIRS and MODIS to Hong Lake waters in the five years of water extraction and area calculation, 2012&amp;ndash;2016 period, Hong Lake’s average area of 348.213&amp;thinsp;km<sup>2</sup> in flood season, in dry season average area of 349.163&amp;thinsp;km<sup>2</sup>. The largest area for the 2012 flood season 389.751&amp;thinsp;km<sup>2</sup>, the smallest area of 2016 flood season 306.177&amp;thinsp;km<sup>2</sup>. Overall, Hong Lake’s area changes little.


2020 ◽  
Vol 13 (11) ◽  
pp. 5955-5975
Author(s):  
Hai Zhang ◽  
Shobha Kondragunta ◽  
Istvan Laszlo ◽  
Mi Zhou

Abstract. The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) series enables retrieval of aerosol optical depth (AOD) from geostationary satellites using a multiband algorithm similar to those of polar-orbiting satellites' sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). However, this work demonstrates that the current version of GOES-16 (GOES-East) ABI AOD has diurnally varying biases due to limitations in the land surface reflectance relationships between the 0.47 µm band and the 2.2 µm band and between the 0.64 µm band and 2.2 µm band used in the ABI AOD retrieval algorithm, which vary with the Sun–satellite geometry and NDVI (normalized difference vegetation index). To reduce these biases, an empirical bias correction algorithm has been developed based on the lowest observed ABI AOD of an adjacent 30 d period and the background AOD at each time step and at each pixel. The bias correction algorithm improves the performance of ABI AOD compared to AErosol RObotic NETwork (AERONET) AOD, especially for the high and medium (top 2) quality ABI AOD. AOD data for the period 6 August to 31 December 2018 are used to evaluate the bias correction algorithm. After bias correction, the correlation between the top 2 quality ABI AOD and AERONET AOD improves from 0.87 to 0.91, the mean bias improves from 0.04 to 0.00, and root-mean-square error (RMSE) improves from 0.09 to 0.05. These results for the bias-corrected top 2 qualities ABI AOD are comparable to those of the corrected high-quality ABI AOD. By using the top 2 qualities of ABI AOD in conjunction with the bias correction algorithm, the areal coverage of ABI AOD is increased by about 100 % without loss of data accuracy.


2018 ◽  
Vol 10 (8) ◽  
pp. 1293 ◽  
Author(s):  
Yunpeng Luo ◽  
Tarek S. El-Madany ◽  
Gianluca Filippa ◽  
Xuanlong Ma ◽  
Bernhard Ahrens ◽  
...  

Tree–grass ecosystems are widely distributed. However, their phenology has not yet been fully characterized. The technique of repeated digital photographs for plant phenology monitoring (hereafter referred as PhenoCam) provide opportunities for long-term monitoring of plant phenology, and extracting phenological transition dates (PTDs, e.g., start of the growing season). Here, we aim to evaluate the utility of near-infrared-enabled PhenoCam for monitoring the phenology of structure (i.e., greenness) and physiology (i.e., gross primary productivity—GPP) at four tree–grass Mediterranean sites. We computed four vegetation indexes (VIs) from PhenoCams: (1) green chromatic coordinates (GCC), (2) normalized difference vegetation index (CamNDVI), (3) near-infrared reflectance of vegetation index (CamNIRv), and (4) ratio vegetation index (CamRVI). GPP is derived from eddy covariance flux tower measurement. Then, we extracted PTDs and their uncertainty from different VIs and GPP. The consistency between structural (VIs) and physiological (GPP) phenology was then evaluated. CamNIRv is best at representing the PTDs of GPP during the Green-up period, while CamNDVI is best during the Dry-down period. Moreover, CamNIRv outperforms the other VIs in tracking growing season length of GPP. In summary, the results show it is promising to track structural and physiology phenology of seasonally dry Mediterranean ecosystem using near-infrared-enabled PhenoCam. We suggest using multiple VIs to better represent the variation of GPP.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5423
Author(s):  
Shou-Hao Chiang ◽  
Noel Ivan Ulloa

Wildfires are considered one of the most major hazards and environmental issues worldwide. Recently, Earth observation satellite (EOS) sensors have proven to be effective for wildfire detection, although the quality and usefulness of the data are often hindered by cloud presence. One practical workaround is to combine datasets from multiple sensors. This research presents a methodology that utilizes data of the recently-launched Sentinel-3 sea and land surface temperature radiometer (S3-SLSTR) to reflect its applicability for detecting wildfires. In addition, visible infrared imaging radiometer suite day night band (VIIRS-DNB) imagery was introduced to assure day-night tracking capabilities. The wildfire event in the Indio Maiz Biological Reserve, Nicaragua, during 3–13 April 2018, was the study case. Six S3-SLSTR images were processed to compute spectral indices, such as the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), and the normalized burn ratio (NBR), to perform image segmentation for estimating the burnt area. The results indicate that 5870.7 ha of forest was affected during the wildfire, close to the 5945 ha reported by local authorities. In this study, the fire expansion was delineated and tracked in the Indio Maiz Biological Reserve using a modified fast marching method on nighttime-sensed temporal VIIRS-DNB. This study shows the importance of S3-SLSRT for wildfire monitoring and how it can be complemented with VIIRS-DNB to track burning biomass at daytime and nighttime.


2020 ◽  
Vol 133 (10) ◽  
pp. 2853-2868
Author(s):  
Mahlet T. Anche ◽  
Nicholas S. Kaczmar ◽  
Nicolas Morales ◽  
James W. Clohessy ◽  
Daniel C. Ilut ◽  
...  

Abstract Key message Heritable variation in phenotypes extracted from multi-spectral images (MSIs) and strong genetic correlations with end-of-season traits indicates the value of MSIs for crop improvement and modeling of plant growth curve. Abstract Vegetation indices (VIs) derived from multi-spectral imaging (MSI) platforms can be used to study properties of crop canopy, providing non-destructive phenotypes that could be used to better understand growth curves throughout the growing season. To investigate the amount of variation present in several VIs and their relationship with important end-of-season traits, genetic and residual (co)variances for VIs, grain yield and moisture were estimated using data collected from maize hybrid trials. The VIs considered were Normalized Difference Vegetation Index (NDVI), Green NDVI, Red Edge NDVI, Soil-Adjusted Vegetation Index, Enhanced Vegetation Index and simple Ratio of Near Infrared to Red (Red) reflectance. Genetic correlations of VIs with grain yield and moisture were used to fit multi-trait models for prediction of end-of-season traits and evaluated using within site/year cross-validation. To explore alternatives to fitting multiple phenotypes from MSI, random regression models with linear splines were fit using data collected in 2016 and 2017. Heritability estimates ranging from (0.10 to 0.82) were observed, indicating that there exists considerable amount of genetic variation in these VIs. Furthermore, strong genetic and residual correlations of the VIs, NDVI and NDRE, with grain yield and moisture were found. Considerable increases in prediction accuracy were observed from the multi-trait model when using NDVI and NDRE as a secondary trait. Finally, random regression with a linear spline function shows potential to be used as an alternative to mixed models to fit VIs from multiple time points.


Author(s):  
Eniel Rodríguez-Machado ◽  
Osmany Aday-Díaz ◽  
Luis Hernández-Santana ◽  
Jorge Luís Soca-Muñoz ◽  
Rubén Orozco-Morales

Precision agriculture, making use of the spatial and temporal variability of cultivable land, allows farmers to refine fertilization, control field irrigation, estimate planting productivity, and detect pests and disease in crops. To that end, this paper identifies the spectral reflectance signature of brown rust (Puccinia melanocephala) and orange rust (Puccinia kuehnii), which contaminate sugar cane leaves (Saccharum spp.). By means of spectrometry, the mean values and standard deviations of the spectral reflectance signature are obtained for five levels of contamination of the leaves in each type of rust, observing the greatest differences between healthy and diseased leaves in the red (R) and near infrared (NIR) bands. With the results obtained, a multispectral camera was used to obtain images of the leaves and calculate the Normalized Difference Vegetation Index (NDVI). The results identified the presence of both plagues by differentiating healthy from contaminated leaves through the index value with an average difference of 11.9% for brown rust and 9.9% for orange rust.


2010 ◽  
Vol 49 (11) ◽  
pp. 2315-2333 ◽  
Author(s):  
Galina Wind ◽  
Steven Platnick ◽  
Michael D. King ◽  
Paul A. Hubanks ◽  
Michael J. Pavolonis ◽  
...  

Abstract Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Earth Observing System (EOS) Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that present difficulties for retrieving cloud effective radius using single-layer plane-parallel cloud models. The algorithm uses the MODIS 0.94-μm water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94-μm methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases.


Author(s):  
Abdon Francisco Aureliano Netto ◽  
Rodrigo Nogueira Martins ◽  
Guilherme Silverio Aquino De Souza ◽  
Fernando Ferreira Lima Dos Santos ◽  
Jorge Tadeu Fim Rosas

This study aimed to modify a webcam by replacing its near-infrared (NIR) blocking filter to a low-cost red, green and blue (RGB) filter for obtaining NIR images and to evaluate its performance in two agricultural applications. First, the sensitivity of the webcam to differentiate normalized difference vegetation index (NDVI) levels through five nitrogen (N) doses applied to the Batatais grass (Paspalum notatum Flugge) was verified. Second, images from maize crops were processed using different vegetation indices, and thresholding methods with the aim of determining the best method for segmenting crop canopy from the soil. Results showed that the webcam sensor was capable of detecting the effect of N doses through different NDVI values at 7 and 21 days after N application. In the second application, the use of thresholding methods, such as Otsu, Manual, and Bayes when previously processed by vegetation indices showed satisfactory accuracy (up to 73.3%) in separating the crop canopy from the soil.


Sign in / Sign up

Export Citation Format

Share Document