scholarly journals Improved Streamflow Forecast in a Small-Medium Sized River Basin with Coupled WRF and WRF-Hydro: Effects of Radar Data Assimilation

2021 ◽  
Vol 13 (16) ◽  
pp. 3251
Author(s):  
Tianwei Gu ◽  
Yaodeng Chen ◽  
Yufang Gao ◽  
Luyao Qin ◽  
Yuqing Wu ◽  
...  

Accurate and long leading time flood forecasting is very important for flood disaster mitigation. It is an effective method to couple the Quantitative Precipitation Forecast (QPF) products provided by Numerical Weather Prediction (NWP) models to a distributed hydrological model with the goal of extending the leading time for flood forecasting. However, the QPF products contain a certain degree of uncertainty and would affect the accuracy of flood forecasting, especially in the mountainous regions. Radar data assimilation plays an important role in improving the quality of QPF and further improves flood forecasting. In this paper, radar data assimilation was applied in order to construct a high-resolution atmospheric-hydrological coupling model based on the WRF and WRF-Hydro models. Four experiments with conventional observational and radar data assimilation were conducted to evaluate the flood forecasting capability of this coupled model in a small-medium sized basin based on eight typical flood events. The results show that the flood forecast skills are highly QPF-dependent. The QPF from the WRF model is improved by assimilating radar data and further increasing the accuracy of flood forecasting, although both precipitation and flood are slightly over-forecasted. However, the improvements by assimilating conventional observational data are not obvious. In general, radar data assimilation can improve flood forecasting effectively in a small-medium sized basin based on the atmospheric-hydrological coupling model.

2020 ◽  
Vol 10 (16) ◽  
pp. 5493 ◽  
Author(s):  
Jingnan Wang ◽  
Lifeng Zhang ◽  
Jiping Guan ◽  
Mingyang Zhang

Satellite and radar observations represent two fundamentally different remote sensing observation types, providing independent information for numerical weather prediction (NWP). Because the individual impact on improving forecast has previously been examined, combining these two resources of data potentially enhances the performance of weather forecast. In this study, satellite radiance, radar radial velocity and reflectivity are simultaneously assimilated with the Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) assimilation method (referred to as POD-4DEnVar). The impact is evaluated on continuous severe rainfall processes occurred from June to July in 2016 and 2017. Results show that combined assimilation of satellite and radar data with POD-4DEnVar has the potential to improve weather forecast. Averaged over 22 forecasts, RMSEs indicate that though the forecast results are sensitive to different variables, generally the improvement is found in different pressure levels with assimilation. The precipitation skill scores are generally increased when assimilation is carried out. A case study is also examined to figure out the contributions to forecast improvement. Better intensity and distribution of precipitation forecast is found in the accumulated rainfall evolution with POD-4DEnVar assimilation. These improvements are attributed to the local changes in moisture, temperature and wind field. In addition, with radar data assimilation, the initial rainwater and cloud water conditions are changed directly. Both experiments can simulate the strong hydrometeor in the precipitation area, but assimilation spins up faster, strengthening the initial intensity of the heavy rainfall. Generally, the combined assimilation of satellite and radar data results in better rainfall forecast than without data assimilation.


2017 ◽  
Vol 145 (2) ◽  
pp. 683-708 ◽  
Author(s):  
Xuanli Li ◽  
John R. Mecikalski ◽  
Derek Posselt

In this study, an ice-phase microphysics forward model has been developed for the Weather Research and Forecasting (WRF) Model three-dimensional variational data assimilation (WRF 3D-Var) system. Radar forward operators for reflectivity and the polarimetric variable, specific differential phase ( KDP), have been built into the ice-phase WRF 3D-Var package to allow modifications in liquid (cloud water and rain) and solid water (cloud ice and snow) fields through data assimilation. Experiments have been conducted to assimilate reflectivity and radial velocity observations collected by the Weather Surveillance Radar-1988 Doppler (WSR-88D) in Hytop, Alabama, for a mesoscale convective system (MCS) on 15 March 2008. Numerical results have been examined to assess the impact of the WSR-88D data using the ice-phase WRF 3D-Var radar data assimilation package. The main goals are to first demonstrate radar data assimilation with an ice-phase microphysics forward model and second to improve understanding on how to enhance the utilization of radar data in numerical weather prediction. Results showed that the assimilation of reflectivity and radial velocity data using the ice-phase system provided significant improvement especially in the mid- to upper troposphere. The improved initial conditions led to apparent improvement in the short-term precipitation forecast of the MCS. An additional experiment has been conducted to explore the assimilation of KDP data collected by the Advanced Radar for Meteorological and Operational Research (ARMOR). Results showed that KDP data have been successfully assimilated using the ice-phase 3D-Var package. A positive impact of the KDP data has been found on rainwater in the lower troposphere and snow in the mid- to upper troposphere.


2010 ◽  
Vol 27 (7) ◽  
pp. 1140-1152 ◽  
Author(s):  
Eunha Lim ◽  
Juanzhen Sun

Abstract A Doppler velocity dealiasing algorithm is developed within the storm-scale four-dimensional radar data assimilation system known as the Variational Doppler Radar Analysis System (VDRAS). The innovative aspect of the algorithm is that it dealiases Doppler velocity at each grid point independently by using three-dimensional wind fields obtained either from an objective analysis using conventional observations and mesoscale model output or from a rapidly updated analysis of VDRAS that assimilates radar data. This algorithm consists of three steps: preserving horizontal shear, global dealiasing using reference wind from the objective analysis or the VDRAS analysis, and local dealiasing. It is automated and intended to be used operationally for radar data assimilation using numerical weather prediction models. The algorithm was tested with 384 volumes of radar data observed from the Next Generation Weather Radar (NEXRAD) for a severe thunderstorm that occurred during 15 June 2002. It showed that the algorithm was effective in dealiasing large areas of aliased velocities when the wind from the objective analysis was used as the reference and that more accurate dealiasing was achieved by using the continuously cycled VDRAS analysis.


Author(s):  
Serguei Ivanov ◽  
Silas Michaelides ◽  
Igor Ruban

This study presents a pre-processing approach adopted for the radar reflectivity data assimilation and results of simulations with the Harmonie numerical weather prediction model. The method shows an improvement of precipitation prediction within the radar location area in both the rain rates and spatial pattern presentation. With the assimilation of radar data, the model simulates larger water content in the middle troposphere within the layer from 1 to 6 km, with major variations at 2.5–3 km; it also reproduces better the mesoscale belt and cell patterns of precipitation fields.


2020 ◽  
Author(s):  
Silas Michaelides ◽  
Serguei Ivanov ◽  
Igor Ruban ◽  
Demetris Charalambous ◽  
Filippos Tymvios

<p>Quantitative Precipitation Forecasting (QPF) is among the most central challenges of atmospheric prediction systems. The primary aim of such a task is the generation of accurate estimates of heavy precipitation events associated with severe weather, atmospheric fronts and heavy convective rainfalls. QPF is still among the most intricate challenges of Numerical Weather Prediction. The efforts in this direction are mainly concentrated on improving model formulations for microphysics and convective process and remote sensing data assimilation.</p><p>This paper describes the first results with the regional radar signal processing chain that provides the radar data assimilation (RDA) in the Harmonie convection permitting numerical model. This task is performed for a case study focusing on a wintertime frontal cyclone over the island of Cyprus. Reflectivity measurements from two weather radars, at Larnaka and Paphos, are exploited for simulations of severe weather conditions associated with this synoptic-scale system. Through the variational assimilation procedure, the model takes into account the atmospheric processes occurring in the upstream flow which can be outside the area of radar measurements. The focus is on the precipitable water vapor content and its changes during the cyclone evolution, as well as on the impact of the radar data assimilation on precipitation estimates.</p><p>The results show that the numerical experiments exhibit, in general, a suitable simulation of precipitable water at different stages of the cyclone. In particular, the bulk of the rainfall volume exhibits three stages: intensive rain on the cyclone's frontal zone, weaker precipitation immediately behind the front, and the secondary enhancement of rainfall. The largest corrections due to RDA are of up to 5 mm and occur during the approach of the cyclone frontal zone in a form of enhanced rainfall over the whole area, but more prominently in weak precipitation locations.</p>


2013 ◽  
Vol 141 (7) ◽  
pp. 2245-2264 ◽  
Author(s):  
Juanzhen Sun ◽  
Hongli Wang

Abstract The Weather Research and Forecasting Model (WRF) four-dimensional variational data assimilation (4D-Var) system described in Part I of this study is compared with its corresponding three-dimensional variational data assimilation (3D-Var) system using a Great Plains squall line observed during the International H2O Project. Two 3D-Var schemes are used in the comparison: a standard 3D-Var radar data assimilation (DA) that is the same as the 4D-Var except for the exclusion of the constraining dynamical model and an enhanced 3D-Var that includes a scheme to assimilate an estimated in-cloud humidity field. The comparison is made by verifying their skills in 0–6-h quantitative precipitation forecast (QPF) against stage-IV analysis, as well as in wind forecasts against radial velocity observations. The relative impacts of assimilating radial velocity and reflectivity on QPF are also compared between the 4D-Var and 3D-Var by conducting data-denial experiments. The results indicate that 4D-Var substantially improves the QPF skill over the standard 3D-Var for the entire 6-h forecast range and over the enhanced 3D-Var for most forecast hours. Radial velocity has a larger impact relative to reflectivity in 4D-Var than in 3D-Var in the first 3 h because of a quicker precipitation spinup. The analyses and forecasts from the 4D-Var and 3D-Var schemes are further compared by examining the meridional wind, horizontal convergence, low-level cold pool, and midlevel temperature perturbation, using analyses from the Variational Doppler Radar Analysis System (VDRAS) as references. The diagnoses of these fields suggest that the 4D-Var analyzes the low-level cold pool, its leading edge convergence, and midlevel latent heating in closer resemblance to the VDRAS analyses than the 3D-Var schemes.


2014 ◽  
Vol 18 (3) ◽  
pp. 31-39 ◽  
Author(s):  
Katarzyna Ośródka ◽  
Jan Szturc ◽  
Bogumił Jakubiak ◽  
Anna Jurczyk

Abstract The paper is focused on the processing of 3D weather radar data to minimize the impact of a number of errors from different sources, both meteorological and non-meteorological. The data is also quantitatively characterized in terms of its quality. A set of dedicated algorithms based on analysis of the reflectivity field pattern is described. All the developed algorithms were tested on data from the Polish radar network POLRAD. Quality control plays a key role in avoiding the introduction of incorrect information into applications using radar data. One of the quality control methods is radar data assimilation in numerical weather prediction models to estimate initial conditions of the atmosphere. The study shows an experiment with quality controlled radar data assimilation in the COAMPS model using the ensemble Kalman filter technique. The analysis proved the potential of radar data for such applications; however, further investigations will be indispensable.


Author(s):  
Jeong-Ho Bae ◽  
Ki-Hong Min

Radar observation data with high temporal and spatial resolution are used in the data assimilation experiment to improve precipitation forecast of a numerical model. The numerical model considered in this study is Weather Research and Forecasting (WRF) model with double-moment 6-class microphysics scheme (WDM6). We calculated radar equivalent reflectivity factor using higher resolution WRF and compared with radar observations in South Korea. To compare the precipitation forecast characteristics of three-dimensional variational (3D-Var) assimilation of radar data, four experiments are performed based on different precipitation types. Comparisons of the 24-h accumulated rainfall with Automatic Weather Station (AWS) data, Contoured Frequency by Altitude Diagram (CFAD), Time Height Cross Sections (THCS), and vertical hydrometeor profiles are used to evaluate and compare the accuracy. The model simulations are performed with and with-out 3D-VAR radar reflectivity, radial velocity and AWS assimilation for two mesoscale convective cases and two synoptic scale cases. The radar data assimilation experiment improved the location of precipitation area and rainfall intensity compared to the control run. Especially, for the two convective cases, simulating mesoscale convective system was greatly improved.


2021 ◽  
Vol 21 (2) ◽  
pp. 723-742
Author(s):  
Jiyang Tian ◽  
Ronghua Liu ◽  
Liuqian Ding ◽  
Liang Guo ◽  
Bingyu Zhang

Abstract. As an effective technique to improve the rainfall forecast, data assimilation plays an important role in meteorology and hydrology. The aim of this study is to explore the reasonable use of Doppler radar data assimilation to correct the initial and lateral boundary conditions of the numerical weather prediction (NWP) systems. The Weather Research and Forecasting (WRF) model is applied to simulate three typhoon storm events on the southeast coast of China. Radar data from a Doppler radar station in Changle, China, are assimilated with three-dimensional variational data assimilation (3-DVar) model. Nine assimilation modes are designed by three kinds of radar data and at three assimilation time intervals. The rainfall simulations in a medium-scale catchment, Meixi, are evaluated by three indices, including relative error (RE), critical success index (CSI), and root mean square error (RMSE). Assimilating radial velocity at a time interval of 1 h can significantly improve the rainfall simulations, and it outperforms the other modes for all the three storm events. Shortening the assimilation time interval can improve the rainfall simulations in most cases, while assimilating radar reflectivity always leads to worse simulations as the time interval shortens. The rainfall simulations can be improved by data assimilation as a whole, especially for the heavy rainfall with strong convection. The findings provide references for improving the typhoon rainfall forecasts at catchment scale and have great significance on typhoon rainstorm warning.


Sign in / Sign up

Export Citation Format

Share Document