scholarly journals Mapping Daily Evapotranspiration at Field Scale Using the Harmonized Landsat and Sentinel-2 Dataset, with Sharpened VIIRS as a Sentinel-2 Thermal Proxy

2021 ◽  
Vol 13 (17) ◽  
pp. 3420
Author(s):  
Jie Xue ◽  
Martha C. Anderson ◽  
Feng Gao ◽  
Christopher Hain ◽  
Yun Yang ◽  
...  

Accurate and frequent monitoring of evapotranspiration (ET) at sub-field scales can provide valuable information for agricultural water management, quantifying crop water use and stress toward the goal of increasing crop water use efficiency and production. Using land-surface temperature (LST) data retrieved from Landsat thermal infrared (TIR) imagery, along with surface reflectance data describing albedo and vegetation cover fraction, surface energy balance models can generate ET maps down to a 30 m spatial resolution. However, the temporal sampling by such maps can be limited by the relatively infrequent revisit period of Landsat data (8 days for combined Landsats 7 and 8), especially in cloudy areas experiencing rapid changes in moisture status. The Sentinel-2 (S2) satellites, as a good complement to the Landsat system, provide surface reflectance data at 10–20 m spatial resolution and 5 day revisit period but do not have a thermal sensor. On the other hand, the Visible Infrared Imaging Radiometer Suite (VIIRS) provides TIR data on a near-daily basis with 375 m resolution, which can be refined through thermal sharpening using S2 reflectances. This study assesses the utility of augmenting the Harmonized Landsat and Sentinel-2 (HLS) dataset with S2-sharpened VIIRS as a thermal proxy source on S2 overpass days, enabling 30 m ET mapping at a potential combined frequency of 2–3 days (including Landsat). The value added by including VIIRS-S2 is assessed both retrospectively and operationally in comparison with flux tower observations collected from several U.S. agricultural sites covering a range of crop types. In particular, we evaluate the performance of VIIRS-S2 ET estimates as a function of VIIRS view angle and cloud masking approach. VIIRS-S2 ET retrievals (MAE of 0.49 mm d−1 against observations) generally show comparable accuracy to Landsat ET (0.45 mm d−1) on days of commensurate overpass, but with decreasing performance at large VIIRS view angles. Low-quality VIIRS-S2 ET retrievals linked to imperfect VIIRS/S2 cloud masking are also discussed, and caution is required when applying such data for generating ET timeseries. Fused daily ET time series benefited during the peak growing season from the improved multi-source temporal sampling afforded by VIIRS-S2, particularly in cloudy regions and over surfaces with rapidly changing vegetation conditions, and value added for real-time monitoring applications is discussed. This work demonstrates the utility and feasibility of augmenting the HLS dataset with sharpened VIIRS TIR imagery on S2 overpass dates for generating high spatiotemporal resolution ET products.

2018 ◽  
Vol 10 (12) ◽  
pp. 1867 ◽  
Author(s):  
Bruno Aragon ◽  
Rasmus Houborg ◽  
Kevin Tu ◽  
Joshua B. Fisher ◽  
Matthew McCabe

Remote sensing based estimation of evapotranspiration (ET) provides a direct accounting of the crop water use. However, the use of satellite data has generally required that a compromise between spatial and temporal resolution is made, i.e., one could obtain low spatial resolution data regularly, or high spatial resolution occasionally. As a consequence, this spatiotemporal trade-off has tended to limit the impact of remote sensing for precision agricultural applications. With the recent emergence of constellations of small CubeSat-based satellite systems, these constraints are rapidly being removed, such that daily 3 m resolution optical data are now a reality for earth observation. Such advances provide an opportunity to develop new earth system monitoring and assessment tools. In this manuscript we evaluate the capacity of CubeSats to advance the estimation of ET via application of the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) retrieval model. To take advantage of the high-spatiotemporal resolution afforded by these systems, we have integrated a CubeSat derived leaf area index as a forcing variable into PT-JPL, as well as modified key biophysical model parameters. We evaluate model performance over an irrigated farmland in Saudi Arabia using observations from an eddy covariance tower. Crop water use retrievals were also compared against measured irrigation from an in-line flow meter installed within a center-pivot system. To leverage the high spatial resolution of the CubeSat imagery, PT-JPL retrievals were integrated over the source area of the eddy covariance footprint, to allow an equivalent intercomparison. Apart from offering new precision agricultural insights into farm operations and management, the 3 m resolution ET retrievals were shown to explain 86% of the observed variability and provide a relative RMSE of 32.9% for irrigated maize, comparable to previously reported satellite-based retrievals. An observed underestimation was diagnosed as a possible misrepresentation of the local surface moisture status, highlighting the challenge of high-resolution modeling applications for precision agriculture and informing future research directions. .


2021 ◽  
Author(s):  
Bruno Jose Luis Aragon Solorio ◽  
Matteo G. Ziliani ◽  
Matthew F. McCabe

<p>Precision agriculture needs accurate information on crop water use (via evaporation) at high spatiotemporal resolutions. Conventional satellite missions have traditionally required a compromise between having high spatial resolution retrievals occasionally; or coarse resolution captures regularly. The development of CubeSats is relaxing the need for such a compromise by monitoring the Earth at high spatiotemporal resolutions. Here, we show the results of using Planet’s daily CubeSat imagery to derive evaporation at 3 m spatial resolution over three agricultural fields in Nebraska USA. Our results indicate that the derived evaporation estimates can provide accurate information on crop water use when evaluated against eddy covariance measurements (r<sup>2</sup> of 0.86-0.89; mean absolute error between 0.06-0.08<sup></sup>mm/h) and deliver new insights to enhance water security efforts and in-field decision making.</p>


1981 ◽  
Vol 17 (4) ◽  
pp. 1095-1108 ◽  
Author(s):  
J. E. Burt ◽  
J. T. Hayes ◽  
P. A. O'Rourke ◽  
W. H. Terjung ◽  
P. E. Todhunter
Keyword(s):  

1983 ◽  
Vol 34 (6) ◽  
pp. 661 ◽  
Author(s):  
RJ Lawn

The effect of spatial arrangement and population density on growth, dry matter production, yield and water use of black gram (Vigna mungo cv. Regur), green gram (V. radiata cv. Berken), cowpea (V. unguiculata CPI 28215) and soybean (Glycine rnax CP126671), under irrigated, rain-fed fallowed and rain-fed double-cropped culture was evaluated at Dalby in south-eastern Queensland. Equidistant spacings increased initial rates of leaf area index (LAI) development and crop water use compared with 1-m rows at the same population densities. In the irrigated and rain-fed fallowed treatments, where more water was available for crop growth, both seed yields and total crop water use were higher in the equidistant spacings. However, in the double-cropped treatment, where water availability was limited, there was no yield difference between rows and equidistant spacings, primarily because initially faster growth in the latter was offset by more severe water stress later in the season. Higher population density also increased initial crop growth rate and water use, particularly in the equidistant spacings. However, there was no significant yield response to density, presumably because subsequent competition for light/ water offset initial effects on growth. Although absolute yield differences existed between legume cultivars within cultural treatments, there were no significant differential responses to either spatial arrangement or population density among these four cultivars.


2017 ◽  
Vol 113 (7/8) ◽  
Author(s):  
Abiodun A. Ogundeji ◽  
Henry Jordaan

Climate change and its impact on already scarce water resources are of global importance, but even more so for water scarce countries. Apart from the effect of climate change on water supply, the chill unit requirement of deciduous fruit crops is also expected to be affected. Although research on crop water use has been undertaken, researchers have not taken the future climate into consideration. They also have focused on increasing temperatures but failed to relate temperature to chill unit accumulation, especially in South Africa. With a view of helping farmers to adapt to climate change, in this study we provide information that will assist farmers in their decision-making process for adaptation and in the selection of appropriate cultivars of deciduous fruits. Crop water use and chill unit requirements are modelled for the present and future climate. Results show that, irrespective of the irrigation system employed, climate change has led to increases in crop water use. Water use with the drip irrigation system was lower than with sprinkler irrigation as a result of efficiency differences in the irrigation technologies. It was also confirmed that the accumulated chill units will decrease in the future as a consequence of climate change. In order to remain in production, farmers need to adapt to climate change stress by putting in place water resources and crop management plans. Thus, producers must be furnished with a variety of adaptation or management strategies to overcome the impact of climate change.


2012 ◽  
Vol 76 (2) ◽  
pp. 607-616 ◽  
Author(s):  
Judy A. Tolk ◽  
Steven R. Evett

2014 ◽  
Vol 52 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Agung Putra PAMUNGKAS ◽  
Kenji HATOU ◽  
Tetsuo MORIMOTO

Geoderma ◽  
2018 ◽  
Vol 327 ◽  
pp. 13-24 ◽  
Author(s):  
Mukhtar Ahmad ◽  
Debashis Chakraborty ◽  
Pramila Aggarwal ◽  
Ranjan Bhattacharyya ◽  
Ravender Singh

Sign in / Sign up

Export Citation Format

Share Document