scholarly journals Mapping and Monitoring of Land Cover/Land Use (LCLU) Changes in the Crozon Peninsula (Brittany, France) from 2007 to 2018 by Machine Learning Algorithms (Support Vector Machine, Random Forest, and Convolutional Neural Network) and by Post-classification Comparison (PCC)

2021 ◽  
Vol 13 (19) ◽  
pp. 3899
Author(s):  
Guanyao Xie ◽  
Simona Niculescu

Land cover/land use (LCLU) is currently a very important topic, especially for coastal areas that connect the land and the coast and tend to change frequently. LCLU plays a crucial role in land and territory planning and management tasks. This study aims to complement information on the types and rates of LCLU multiannual changes with the distributions, rates, and consequences of these changes in the Crozon Peninsula, a highly fragmented coastal area. To evaluate the multiannual change detection (CD) capabilities using high-resolution (HR) satellite imagery, we implemented three remote sensing algorithms: a support vector machine (SVM), a random forest (RF) combined with geographic object-based image analysis techniques (GEOBIA), and a convolutional neural network (CNN), with SPOT 5 and Sentinel 2 data from 2007 and 2018. Accurate and timely CD is the most important aspect of this process. Although all algorithms were indicated as efficient in our study, with accuracy indices between 70% and 90%, the CNN had significantly higher accuracy than the SVM and RF, up to 90%. The inclusion of the CNN significantly improved the classification performance (5–10% increase in the overall accuracy) compared with the SVM and RF classifiers applied in our study. The CNN eliminated some of the confusion that characterizes a coastal area. Through the study of CD results by post-classification comparison (PCC), multiple changes in LCLU could be observed between 2007 and 2018: both the cultivated and non-vegetated areas increased, accompanied by high deforestation, which could be explained by the high rate of urbanization in the peninsula.

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2119
Author(s):  
Victor Flores ◽  
Claudio Leiva

The copper mining industry is increasingly using artificial intelligence methods to improve copper production processes. Recent studies reveal the use of algorithms, such as Artificial Neural Network, Support Vector Machine, and Random Forest, among others, to develop models for predicting product quality. Other studies compare the predictive models developed with these machine learning algorithms in the mining industry as a whole. However, not many copper mining studies published compare the results of machine learning techniques for copper recovery prediction. This study makes a detailed comparison between three models for predicting copper recovery by leaching, using four datasets resulting from mining operations in Northern Chile. The algorithms used for developing the models were Random Forest, Support Vector Machine, and Artificial Neural Network. To validate these models, four indicators or values of merit were used: accuracy (acc), precision (p), recall (r), and Matthew’s correlation coefficient (mcc). This paper describes the dataset preparation and the refinement of the threshold values used for the predictive variable most influential on the class (the copper recovery). Results show both a precision over 98.50% and also the model with the best behavior between the predicted and the real values. Finally, the obtained models have the following mean values: acc = 0.943, p = 88.47, r = 0.995, and mcc = 0.232. These values are highly competitive when compared with those obtained in similar studies using other approaches in the context.


Author(s):  
L. E. Christovam ◽  
G. G. Pessoa ◽  
M. H. Shimabukuro ◽  
M. L. B. T. Galo

<p><strong>Abstract.</strong> Land Use and Land Cover (LULC) information is an important data source for modeling environmental variables, so it is essential to develop high quality LULC maps. The hundreds of continuous spectral bands gathered with hyperspectral sensors provide high spectral detail and consequently confirm hyperspectral remote sensing as an appropriate option for many LULC applications. Despite increased spectral detail, issues like high dimensionality, huge volume of data and redundant information, mean that hyperspectral image classification is a complex task. It is therefore essential to develop classification approaches that deals with these issues. Since classification results are directly dependent on the dataset used, it is fundamental to compare and validate the classification approaches in public datasets. With this in mind, aiming to provide a baseline, four classification models in the relatively new hyperspectral HyRANK dataset were evaluated. The classification models were defined with three well-known classification algorithms: Spectral Angle Mapper (SAM), Support Vector Machine (SVM) and Random Forest (RF). A classification model with SAM and another with RF were defined with the 176 surface reflectance bands. A dimensionality reduction with principal component analysis was carried out and a classification model with SVM and another with RF were defined using 14 principal components as features. The results show that SVM and RF algorithms outperformed by far the SAM in terms of accuracy, and that the RF is slightly better than the SVM in this respect. It is also possible to see from the results that the use of principal components as features provided an improvement in the accuracy of the RF and an improvement of 28% in the time spent fitting the classification model.</p>


2020 ◽  
Vol 10 (21) ◽  
pp. 7577
Author(s):  
Agata Sage ◽  
Pawel Badura

Brain hemorrhage is a severe threat to human life, and its timely and correct diagnosis and treatment are of great importance. Multiple types of brain hemorrhage are distinguished depending on the location and character of bleeding. The main division covers five subtypes: subdural, epidural, intraventricular, intraparenchymal, and subarachnoid hemorrhage. This paper presents an approach to detect these intracranial hemorrhage types in computed tomography images of the head. The model trained for each hemorrhage subtype is based on a double-branch convolutional neural network of ResNet-50 architecture. It extracts features from two chromatic representations of the input data: a concatenation of the image normalized in different intensity windows and a stack of three consecutive slices creating a 3D spatial context. The joint feature vector is passed to the classifier to produce the final decision. We tested two tools: the support vector machine and the random forest. The experiments involved 372,556 images from 11,454 CT series of 9997 patients, with each image annotated with labels related to the hemorrhage subtypes. We validated deep networks from both branches of our framework and the model with either of two classifiers under consideration. The obtained results justify the use of a combination of double-source features with the random forest classifier. The system outperforms state-of-the-art methods in terms of F1 score. The highest detection accuracy was obtained in intraventricular (96.7%) and intraparenchymal hemorrhages (93.3%).


Author(s):  
A. Jamali ◽  
A. Abdul Rahman

Abstract. Environmental change monitoring in earth sciences needs land use land cover change (LULCC) modeling to investigate the impact of climate change phenomena such as droughts and floods on earth surface land cover. As land cover has a direct impact on Land Surface Temperature (LST), the Land cover mapping is an essential part of climate change modeling. In this paper, for land use land cover mapping (LULCM), image classification of Sentinel-1A Synthetic Aperture Radar (SAR) Ground Range Detected (GRD) data using two machine learning algorithms including Support Vector Machine (SVM) and Random Forest (RF) are implemented in R programming language and compared in terms of overall accuracy for image classification. Considering eight different scenarios defined in this research, RF and SVM classification methods show their best performance with overall accuracies of 90.81 and 92.09 percent respectively.


Author(s):  
A. Jamali

<p><strong>Abstract.</strong> Due to concerns of recent earth climate changes such as an increase of earth surface temperature and monitoring its effect on earth surface, environmental monitoring is a necessity. Environmental change monitoring in earth sciences needs land use land cover change (LULCC) modelling as a key factor to investigate impact of climate change phenomena such as droughts and floods on earth surface land cover. There are several free and commercial multi/hyper spectral data sources of Earth Observation (EO) satellites including Landsat, Sentinel and Spot. In this paper, for land use land cover modelling (LULCM), image classification of Landsat 8 using several mathematical and machine learning algorithms including Support Vector Machine (SVM), Random Forest (RF), Maximum Likelihood (ML) and a combination of SVM, ML and RF as a fit-for-purpose algorithm are implemented in R programming language and compared in terms of overall accuracy for image classification.</p>


Author(s):  
Victor Flores ◽  
Claudio Leiva

The copper mining industry is increasingly using artificial intelligence methods to improve cop-per production processes. Recent studies reveal the use of algorithms such as Artificial Neural Network, Support Vector Machine, and Random Forest, among others, to develop models for predicting product quality. Other studies compare the predictive models developed with these machine learning algorithms in the mining industry, as a whole. However, not many copper mining studies published compare the results of machine learning techniques for copper recovery prediction. This study makes a detailed comparison between three models for predicting copper recovery by leaching, using four datasets resulting from mining operations in northern Chile. The algorithms used for developing the models were Random Forest, Support Vector Machine, and Artificial Neural Network. To validate these models, four indicators or values of merit were used: accuracy (acc), precision (p), recall (r), and Matthew&rsquo;s correlation coefficient (mcc). This paper describes dataset preparation and the refinement of the threshold values used for the predictive variable most influential on the class (the copper recovery). Results show both a precision over 98.50% and also the model with the best behavior between the predicted and the real. Finally, the models obtained show the following mean values: acc=94.32, p=88.47, r=99.59, and mcc=2.31. These values are highly competitive as compared with those obtained in similar studies using other approaches in the context.


Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


Author(s):  
Wanli Wang ◽  
Botao Zhang ◽  
Kaiqi Wu ◽  
Sergey A Chepinskiy ◽  
Anton A Zhilenkov ◽  
...  

In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 639
Author(s):  
Chen Ma ◽  
Haifei Dang ◽  
Jun Du ◽  
Pengfei He ◽  
Minbo Jiang ◽  
...  

This paper proposes a novel metal additive manufacturing process, which is a composition of gas tungsten arc (GTA) and droplet deposition manufacturing (DDM). Due to complex physical metallurgical processes involved, such as droplet impact, spreading, surface pre-melting, etc., defects, including lack of fusion, overflow and discontinuity of deposited layers always occur. To assure the quality of GTA-assisted DDM-ed parts, online monitoring based on visual sensing has been implemented. The current study also focuses on automated defect classification to avoid low efficiency and bias of manual recognition by the way of convolutional neural network-support vector machine (CNN-SVM). The best accuracy of 98.9%, with an execution time of about 12 milliseconds to handle an image, proved our model can be enough to use in real-time feedback control of the process.


Sign in / Sign up

Export Citation Format

Share Document