scholarly journals Adversarial Self-Supervised Learning for Robust SAR Target Recognition

2021 ◽  
Vol 13 (20) ◽  
pp. 4158
Author(s):  
Yanjie Xu ◽  
Hao Sun ◽  
Jin Chen ◽  
Lin Lei ◽  
Kefeng Ji ◽  
...  

Synthetic aperture radar (SAR) can perform observations at all times and has been widely used in the military field. Deep neural network (DNN)-based SAR target recognition models have achieved great success in recent years. Yet, the adversarial robustness of these models has received far less academic attention in the remote sensing community. In this article, we first present a comprehensive adversarial robustness evaluation framework for DNN-based SAR target recognition. Both data-oriented metrics and model-oriented metrics have been used to fully assess the recognition performance under adversarial scenarios. Adversarial training is currently one of the most successful methods to improve the adversarial robustness of DNN models. However, it requires class labels to generate adversarial attacks and suffers significant accuracy dropping on testing data. To address these problems, we introduced adversarial self-supervised learning into SAR target recognition for the first time and proposed a novel unsupervised adversarial contrastive learning-based defense method. Specifically, we utilize a contrastive learning framework to train a robust DNN with unlabeled data, which aims to maximize the similarity of representations between a random augmentation of a SAR image and its unsupervised adversarial example. Extensive experiments on two SAR image datasets demonstrate that defenses based on adversarial self-supervised learning can obtain comparable robust accuracy over state-of-the-art supervised adversarial learning methods.

2021 ◽  
Vol 13 (3) ◽  
pp. 361
Author(s):  
Ye Tian ◽  
Jianguo Sun ◽  
Pengyuan Qi ◽  
Guisheng Yin ◽  
Liguo Zhang

In recent years, synthetic aperture radar (SAR) automatic target recognition has played a crucial role in multiple fields and has received widespread attention. Compared with optical image recognition with massive annotation data, lacking sufficient labeled images limits the performance of the SAR automatic target recognition (ATR) method based on deep learning. It is expensive and time-consuming to annotate the targets for SAR images, while it is difficult for unsupervised SAR target recognition to meet the actual needs. In this situation, we propose a semi-supervised sample mixing method for SAR target recognition, named multi-block mixed (MBM), which can effectively utilize the unlabeled samples. During the data preprocessing stage, a multi-block mixed method is used to interpolate a small part of the training image to generate new samples. Then, the new samples are used to improve the recognition accuracy of the model. To verify the effectiveness of the proposed method, experiments are carried out on the moving and stationary target acquisition and recognition (MSTAR) data set. The experimental results fully demonstrate that the proposed MBM semi-supervised learning method can effectively address the problem of annotation insufficiency in SAR data sets and can learn valuable information from unlabeled samples, thereby improving the recognition performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Qinmin Ma

The synthetic aperture radar (SAR) image preprocessing techniques and their impact on target recognition performance are researched. The performance of SAR target recognition is improved by composing a variety of preprocessing techniques. The preprocessing techniques achieve the effects of suppressing background redundancy and enhancing target characteristics by processing the size and gray distribution of the original SAR image, thereby improving the subsequent target recognition performance. In this study, image cropping, target segmentation, and image enhancement algorithms are used to preprocess the original SAR image, and the target recognition performance is effectively improved by combining the above three preprocessing techniques. On the basis of image enhancement, the monogenic signal is used for feature extraction and then the sparse representation-based classification (SRC) is used to complete the decision. The experiments are conveyed on the moving and stationary target acquisition and recognition (MSTAR) dataset, and the results prove that the combination of multiple preprocessing techniques can effectively improve the SAR target recognition performance.


2021 ◽  
Vol 183 ◽  
pp. 108030
Author(s):  
Yukun Zhang ◽  
Xiansheng Guo ◽  
Haohao Ren ◽  
Lin Li

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Junhua Wang ◽  
Yuan Jiang

For the problem of synthetic aperture radar (SAR) image target recognition, a method via combination of multilevel deep features is proposed. The residual network (ResNet) is used to learn the multilevel deep features of SAR images. Based on the similarity measure, the multilevel deep features are clustered and several feature sets are obtained. Then, each feature set is characterized and classified by the joint sparse representation (JSR), and the corresponding output result is obtained. Finally, the results of different feature sets are combined using the weighted fusion to obtain the target recognition results. The proposed method in this paper can effectively combine the advantages of ResNet and JSR in feature extraction and classification and improve the overall recognition performance. Experiments and analysis are carried out on the MSTAR dataset with rich samples. The results show that the proposed method can achieve superior performance for 10 types of target samples under the standard operating condition (SOC), noise interference, and occlusion conditions, which verifies its effectiveness.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Chenyu Li ◽  
Guohua Liu

This paper applied block sparse Bayesian learning (BSBL) to synthetic aperture radar (SAR) target recognition. The traditional sparse representation-based classification (SRC) operates on the global dictionary collaborated by different classes. Afterwards, the similarities between the test sample and various classes are evaluated by the reconstruction errors. This paper reconstructs the test sample based on local dictionaries formed by individual classes. Considering the azimuthal sensitivity of SAR images, the linear coefficients on the local dictionary are sparse ones with block structure. Therefore, to solve the sparse coefficients, the BSBL is employed. The proposed method can better exploit the representation capability of each class, thus benefiting the recognition performance. Based on the experimental results on the moving and stationary target acquisition and recognition (MSTAR) dataset, the effectiveness and robustness of the proposed method is confirmed.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lin Chen ◽  
Peng Zhan ◽  
Luhui Cao ◽  
Xueqing Li

A multiview synthetic aperture radar (SAR) target recognition with discrimination and correlation analysis is proposed in this study. The multiple views are first prescreened by a support vector machine (SVM) to select out those highly discriminative ones. These views are then clustered into several view sets, in which images share high correlations. The joint sparse representation (JSR) is adopted to classify SAR images in each view set, and all the decisions from different view sets are fused using a linear weighting strategy. The proposed method makes more sufficient analysis of the multiview SAR images so the recognition performance can be effectively enhanced. To test the proposed method, experiments are set up based on the moving and stationary target acquisition and recognition (MSTAR) dataset. The results show that the proposed method could achieve superior performance under different situations over some compared methods.


2021 ◽  
Vol 13 (20) ◽  
pp. 4021
Author(s):  
Lan Du ◽  
Lu Li ◽  
Yuchen Guo ◽  
Yan Wang ◽  
Ke Ren ◽  
...  

Usually radar target recognition methods only use a single type of high-resolution radar signal, e.g., high-resolution range profile (HRRP) or synthetic aperture radar (SAR) images. In fact, in the SAR imaging procedure, we can simultaneously obtain both the HRRP data and the corresponding SAR image, as the information contained within them is not exactly the same. Although the information contained in the HRRP data and the SAR image are not exactly the same, both are important for radar target recognition. Therefore, in this paper, we propose a novel end-to-end two stream fusion network to make full use of the different characteristics obtained from modeling HRRP data and SAR images, respectively, for SAR target recognition. The proposed fusion network contains two separated streams in the feature extraction stage, one of which takes advantage of a variational auto-encoder (VAE) network to acquire the latent probabilistic distribution characteristic from the HRRP data, and the other uses a lightweight convolutional neural network, LightNet, to extract the 2D visual structure characteristics based on SAR images. Following the feature extraction stage, a fusion module is utilized to integrate the latent probabilistic distribution characteristic and the structure characteristic for the reflecting target information more comprehensively and sufficiently. The main contribution of the proposed method consists of two parts: (1) different characteristics from the HRRP data and the SAR image can be used effectively for SAR target recognition, and (2) an attention weight vector is used in the fusion module to adaptively integrate the different characteristics from the two sub-networks. The experimental results of our method on the HRRP data and SAR images of the MSTAR and civilian vehicle datasets obtained improvements of at least 0.96 and 2.16%, respectively, on recognition rates, compared with current SAR target recognition methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Yibing Li ◽  
Jie Chen ◽  
Fang Ye ◽  
Dandan Liu

ATR system has a broad application prospect in the military field, especially in the field of modern defense technology. When paradoxes are in existence in ATR system due to adverse battlefield environment, integration cannot be effectively and reliably carried out only by traditional DS evidence theory. In this paper, a modified DS evidence theory is presented and applied in IR/MMW target recognition system. The improvement of DS evidence theory is realized by three parts: the introduction of sensor priority and evidence credibility to realize the discount processing of evidences, the modification of DS combination rule to enhance the accuracy of synthesis results, and the compound decision-making rule. The application of the modified algorithm in IR/MMW system is designed to deal with paradoxes, improve the target recognition rate, and ensure the reliability of target recognition system. Experiments are given to illustrate that the introduction of the modified DS evidence theory in IR/MMW system is better able to realize satisfactory target recognition performance through multisensor information fusion than any single-mode system.


Sign in / Sign up

Export Citation Format

Share Document