scholarly journals Dual-Channel Convolutional Neural Network for Bare Surface Soil Moisture Inversion Based on Polarimetric Scattering Models

2021 ◽  
Vol 13 (22) ◽  
pp. 4503
Author(s):  
Qiang Yin ◽  
Junlang Li ◽  
Fei Ma ◽  
Deliang Xiang ◽  
Fan Zhang

The polarimetric synthetic aperture radar (PolSAR) can be used to obtain soil moisture by inverting scattering models at high resolution. The convolutional neural network (CNN) has been recently introduced to estimate soil roughness for PolSAR data, which need to be driven by a large amount of data. In this paper, a dual-channel CNN based on polarimetric models is proposed for soil moisture inversion, and it aims to further expand the applicable range of roughness in the X-Bragg model by integration with the integral equation model (IEM). Meanwhile, it fully utilizes the spatial information of PolSAR images to relax the number of required training samples when real data on the surface are difficult to obtain. Besides, we designed a framework based on this network. Coarse-grained inversion and fine-grained inversion of soil moisture are carried out through the qualitative classification network and the quantitative regression network, respectively. Experiments on simulated and airborne E-SAR data show that the proposed network can accurately fit the nonlinear relationship between polarization parameters and soil moisture, so as to improve the inversion accuracy with a small number of samples. In our experiments, the average inversion accuracy reached 95.39%, and the root mean square error (RMSE) of the regression network was 0.98%. This method can be applied to a wide range of soil moisture monitoring applications.

Author(s):  
C. Zhou ◽  
J. Li ◽  
H. Shen ◽  
Q. Yuan

Abstract. Speckle noise is an intrinsic property of Synthetic Aperture Radar (SAR) imagery, which affects the quality of image. Single-temporal despeckling methods usually pay attention to the utilization of spatial information, but sometimes due to lack of sufficient information, the despeckling image is too smooth or losses some information about edge details. However, multi-temporal SAR images can provide extra information for despeckling resulting in better performance. Therefore, in this paper, we proposed a novel multi-temporal SAR despeckling method based a convolutional neural network (MSAR-CNN) embedded temporal and spatial attention (TSA) module to deeply mine the spatial and temporal correlation of multitemporal SAR images. The whole network, which is end-to-end trained with simulate realistic SAR data, consists of several residual blocks. In addition, the simulated and real-data experiments demonstrate that the proposed MSAR-CNN outperforms most of the mainstream methods in both the quantitative evaluation indexes and visual effects.


Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Charles Gbenga Williams ◽  
Oluwapelumi O. Ojuri

AbstractAs a result of heterogeneity nature of soils and variation in its hydraulic conductivity over several orders of magnitude for various soil types from fine-grained to coarse-grained soils, predictive methods to estimate hydraulic conductivity of soils from properties considered more easily obtainable have now been given an appropriate consideration. This study evaluates the performance of artificial neural network (ANN) being one of the popular computational intelligence techniques in predicting hydraulic conductivity of wide range of soil types and compared with the traditional multiple linear regression (MLR). ANN and MLR models were developed using six input variables. Results revealed that only three input variables were statistically significant in MLR model development. Performance evaluations of the developed models using determination coefficient and mean square error show that the prediction capability of ANN is far better than MLR. In addition, comparative study with available existing models shows that the developed ANN and MLR in this study performed relatively better.


2021 ◽  
Vol 13 (4) ◽  
pp. 554
Author(s):  
A. A. Masrur Ahmed ◽  
Ravinesh C Deo ◽  
Nawin Raj ◽  
Afshin Ghahramani ◽  
Qi Feng ◽  
...  

Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in planning and managing water resources and sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-CNN-GRU) are designed for daily time-step surface soil moisture (SSM) forecasts, employing the gated recurrent unit (GRU), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and convolutional neural network (CNN). To establish the objective model’s viability for SSM forecasting at multi-step daily horizons, the hybrid CEEMDAN-CNN-GRU model is tested at 1st, 5th, 7th, 14th, 21st, and 30th day ahead period by assimilating a comprehensive pool of 52 predictor dataset obtained from three distinct data sources. Data comprise satellite-derived Global Land Data Assimilation System (GLDAS) repository a global, high-temporal resolution, unique terrestrial modelling system, and ground-based variables from Scientific Information Landowners (SILO) and synoptic-scale climate indices. The results demonstrate the forecasting capability of the hybrid CEEMDAN-CNN-GRU model with respect to the counterpart comparative models. This is supported by a relatively lower value of the mean absolute percentage and root mean square error. In terms of the statistical score metrics and infographics employed to test the final model’s utility, the proposed CEEMDAN-CNN-GRU models are considerably superior compared to a standalone and other hybrid method tested on independent SSM data developed through feature selection approaches. Thus, the proposed approach can be successfully implemented in hydrology and agriculture management.


2020 ◽  
Author(s):  
Florian Dupuy ◽  
Olivier Mestre ◽  
Léo Pfitzner

<p>Cloud cover is a crucial information for many applications such as planning land observation missions from space. However, cloud cover remains a challenging variable to forecast, and Numerical Weather Prediction (NWP) models suffer from significant biases, hence justifying the use of statistical post-processing techniques. In our application, the ground truth is a gridded cloud cover product derived from satellite observations over Europe, and predictors are spatial fields of various variables produced by ARPEGE (Météo-France global NWP) at the corresponding lead time.</p><p>In this study, ARPEGE cloud cover is post-processed using a convolutional neural network (CNN). CNN is the most popular machine learning tool to deal with images. In our case, CNN allows to integrate spatial information contained in NWP outputs. We show that a simple U-Net architecture produces significant improvements over Europe. Compared to the raw ARPEGE forecasts, MAE drops from 25.1 % to 17.8 % and RMSE decreases from 37.0 % to 31.6 %. Considering specific needs for earth observation, special interest was put on forecasts with low cloud cover conditions (< 10 %). For this particular nebulosity class, we show that hit rate jumps from 40.6 to 70.7 (which is the order of magnitude of what can be achieved using classical machine learning algorithms such as random forests) while false alarm decreases from 38.2 to 29.9. This is an excellent result, since improving hit rates by means of random forests usually also results in a slight increase of false alarms.</p>


2021 ◽  
Author(s):  
Yuki Shimizu ◽  
Shigeo Morimoto ◽  
Masayuki Sanada ◽  
Yukinori Inoue

The optimal design of interior permanent magnet synchronous motors requires a long time because finite element analysis (FEA) is performed repeatedly. To solve this problem, many researchers have used artificial intelligence to construct a prediction model that can replace FEA. However, because the training data are generated by FEA, it takes a very long time to obtain a sufficient amount of data, making it impossible to train a large-scale prediction model. Here, we propose a method for generating a large amount of data from a small number of FEA results using machine learning. An automatic design system with a deep generative model and a convolutional neural network is then constructed. With its sufficient data, the proposed system can handle three topologies and three motor parameters in a wide range of current vector regions. The proposed system was applied to multi-objective optimization design, with the optimization completed in 13-15 seconds.


2021 ◽  
Author(s):  
Yuki Shimizu ◽  
Shigeo Morimoto ◽  
Masayuki Sanada ◽  
Yukinori Inoue

The optimal design of interior permanent magnet synchronous motors requires a long time because finite element analysis (FEA) is performed repeatedly. To solve this problem, many researchers have used artificial intelligence to construct a prediction model that can replace FEA. However, because the training data are generated by FEA, it takes a very long time to obtain a sufficient amount of data, making it impossible to train a large-scale prediction model. Here, we propose a method for generating a large amount of data from a small number of FEA results using machine learning. An automatic design system with a deep generative model and a convolutional neural network is then constructed. With its sufficient data, the proposed system can handle three topologies and three motor parameters in a wide range of current vector regions. The proposed system was applied to multi-objective optimization design, with the optimization completed in 13-15 seconds.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jianfang Cao ◽  
Chenyan Wu ◽  
Lichao Chen ◽  
Hongyan Cui ◽  
Guoqing Feng

In today’s society, image resources are everywhere, and the number of available images can be overwhelming. Determining how to rapidly and effectively query, retrieve, and organize image information has become a popular research topic, and automatic image annotation is the key to text-based image retrieval. If the semantic images with annotations are not balanced among the training samples, the low-frequency labeling accuracy can be poor. In this study, a dual-channel convolution neural network (DCCNN) was designed to improve the accuracy of automatic labeling. The model integrates two convolutional neural network (CNN) channels with different structures. One channel is used for training based on the low-frequency samples and increases the proportion of low-frequency samples in the model, and the other is used for training based on all training sets. In the labeling process, the outputs of the two channels are fused to obtain a labeling decision. We verified the proposed model on the Caltech-256, Pascal VOC 2007, and Pascal VOC 2012 standard datasets. On the Pascal VOC 2012 dataset, the proposed DCCNN model achieves an overall labeling accuracy of up to 93.4% after 100 training iterations: 8.9% higher than the CNN and 15% higher than the traditional method. A similar accuracy can be achieved by the CNN only after 2,500 training iterations. On the 50,000-image dataset from Caltech-256 and Pascal VOC 2012, the performance of the DCCNN is relatively stable; it achieves an average labeling accuracy above 93%. In contrast, the CNN reaches an accuracy of only 91% even after extended training. Furthermore, the proposed DCCNN achieves a labeling accuracy for low-frequency words approximately 10% higher than that of the CNN, which further verifies the reliability of the proposed model in this study.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yu Wang ◽  
Xiaofei Wang ◽  
Junfan Jian

Landslides are a type of frequent and widespread natural disaster. It is of great significance to extract location information from the landslide in time. At present, most articles still select single band or RGB bands as the feature for landslide recognition. To improve the efficiency of landslide recognition, this study proposed a remote sensing recognition method based on the convolutional neural network of the mixed spectral characteristics. Firstly, this paper tried to add NDVI (normalized difference vegetation index) and NIRS (near-infrared spectroscopy) to enhance the features. Then, remote sensing images (predisaster and postdisaster images) with same spatial information but different time series information regarding landslide are taken directly from GF-1 satellite as input images. By combining the 4 bands (red + green + blue + near-infrared) of the prelandslide remote sensing images with the 4 bands of the postlandslide images and NDVI images, images with 9 bands were obtained, and the band values reflecting the changing characteristics of the landslide were determined. Finally, a deep learning convolutional neural network (CNN) was introduced to solve the problem. The proposed method was tested and verified with remote sensing data from the 2015 large-scale landslide event in Shanxi, China, and 2016 large-scale landslide event in Fujian, China. The results showed that the accuracy of the method was high. Compared with the traditional methods, the recognition efficiency was improved, proving the effectiveness and feasibility of the method.


2020 ◽  
Vol 9 (2) ◽  
pp. 74
Author(s):  
Eric Hsueh-Chan Lu ◽  
Jing-Mei Ciou

With the rapid development of surveying and spatial information technologies, more and more attention has been given to positioning. In outdoor environments, people can easily obtain positioning services through global navigation satellite systems (GNSS). In indoor environments, the GNSS signal is often lost, while other positioning problems, such as dead reckoning and wireless signals, will face accumulated errors and signal interference. Therefore, this research uses images to realize a positioning service. The main concept of this work is to establish a model for an indoor field image and its coordinate information and to judge its position by image eigenvalue matching. Based on the architecture of PoseNet, the image is input into a 23-layer convolutional neural network according to various sizes to train end-to-end location identification tasks, and the three-dimensional position vector of the camera is regressed. The experimental data are taken from the underground parking lot and the Palace Museum. The preliminary experimental results show that this new method designed by us can effectively improve the accuracy of indoor positioning by about 20% to 30%. In addition, this paper also discusses other architectures, field sizes, camera parameters, and error corrections for this neural network system. The preliminary experimental results show that the angle error correction method designed by us can effectively improve positioning by about 20%.


Sign in / Sign up

Export Citation Format

Share Document