scholarly journals The Spatiotemporal Trend and Pattern of the Rainfall Amount, Intensity and Frequency in TRMM Multi-Satellite Precipitation Analysis (TMPA) Data

2021 ◽  
Vol 13 (22) ◽  
pp. 4629
Author(s):  
Qian Liu ◽  
Long S. Chiu ◽  
Xianjun Hao ◽  
Chaowei Yang

The spatiotemporal mean rain rate (MR) can be characterized by the rain frequency (RF) and the conditional rain rate (CR). We computed these parameters for each season using the TMPA 3-hourly, 0.25° gridded data for the 1998–2017 period at a quasi-global scale, 50°N~50°S. For the global long-term average, MR, RF, and CR are 2.83 mm/d, 10.55%, and 25.05 mm/d, respectively. The seasonal time series of global mean RF and CR show significant decreasing and increasing trends, respectively, while MR depicts only a small but significant trend. The seasonal anomaly of RF decreased by 5.29% and CR increased 13.07 mm/d over the study period, while MR only slightly decreased by −0.029 mm/day. The spatiotemporal patterns in MR, RF, and CR suggest that although there is no prominent trend in the total precipitation amount, the frequency of rainfall events becomes smaller and the average intensity of a single event becomes stronger. Based on the co-variability of RF and CR, the paper optimally classifies the precipitation over land and ocean into four categories using K-means clustering. The terrestrial clusters are consistent with the dry and wet climatology, while categories over the ocean indicate high RF and medium CR in the Inter Tropical Convergence Zone (ITCZ) region; low RF with low CR in oceanic dry zones; and low RF and high CR in storm track areas. Empirical Orthogonal Function (EOF) analysis was then performed, and these results indicated that the major pattern of MR is characterized by an El Niño-Southern Oscillation (ENSO) signal while RF and CR variations are dominated by their trends.

2020 ◽  
Author(s):  
Zhen Zhang ◽  
Etienne Fluet-Chouinard ◽  
Katherine Jensen ◽  
Kyle McDonald ◽  
Gustaf Hugelius ◽  
...  

Abstract. Seasonal and interannual variations in global wetland area is a strong driver of fluctuations in global methane (CH4) emissions. Current maps of global wetland extent vary with wetland definition, causing substantial disagreement and large uncertainty in estimates of wetland methane emissions. To reconcile these differences for large-scale wetland CH4 modeling, we developed a global Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset at ~25 km resolution at equator (0.25 arc-degree) at monthly time-step for 2000–2018. WAD2M combines a time series of surface inundation based on active and passive microwave remote sensing at coarse resolution (~25 km) with six static datasets that discriminate inland waters, agriculture, shoreline, and non-inundated wetlands. We exclude all permanent water bodies (e.g. lakes, ponds, rivers, and reservoirs), coastal wetlands (e.g., mangroves and sea grasses), and rice paddies to only represent spatiotemporal patterns of inundated and non-inundated vegetated wetlands. Globally, WAD2M estimates the long-term maximum wetland area at 13.0 million km2 (Mkm2), which can be separated into three categories: mean annual minimum of inundated and non-inundated wetlands at 3.5 Mkm2, seasonally inundated wetlands at 4.0 Mkm2 (mean annual maximum minus mean annual minimum), and intermittently inundated wetlands at 5.5 Mkm2 (long-term maximum minus mean annual maximum). WAD2M has good spatial agreements with independent wetland inventories for major wetland complexes, i.e., the Amazon Lowland Basin and West Siberian Lowlands, with high Cohen's kappa coefficient of 0.54 and 0.70 respectively among multiple wetlands products. By evaluating the temporal variation of WAD2M against modeled prognostic inundation (i.e., TOPMODEL) and satellite observations of inundation and soil moisture, we show that it adequately represents interannual variation as well as the effect of El Niño-Southern Oscillation on global wetland extent. This wetland extent dataset will improve estimates of wetland CH4 fluxes for global-scale land surface modeling. The dataset can be found at http://doi.org/10.5281/zenodo.3998454 (Zhang et al., 2020).


2021 ◽  
Vol 13 (17) ◽  
pp. 3374
Author(s):  
Xin Chen ◽  
Tiexi Chen ◽  
Qingyun Yan ◽  
Jiangtao Cai ◽  
Renjie Guo ◽  
...  

Vegetation greening, which refers to the interannual increasing trends of vegetation greenness, has been widely found on the regional to global scale. Meanwhile, climate extremes, especially several drought, significantly damage vegetation. The Southwest China (SWC) region experienced massive drought from 2009 to 2012, which severely damaged vegetation and had a huge impact on agricultural systems and life. However, whether these extremes have significantly influenced long-term (multiple decades) vegetation change is unclear. Using the latest remote sensing-based records, including leaf area index (LAI) and gross primary productivity (GPP) for 1982–2016 and enhanced vegetation index (EVI) for 2001–2019, drought events of 2009–2012 only leveled off the greening (increasing in vegetation indices and GPP) temporally and long-term greening was maintained. Meanwhile, drying trends were found to unexpectedly coexist with greening.


Author(s):  
Rodolfo Silva ◽  
Itxaso Oderiz ◽  
Thomas Mortlock ◽  
Ismael Marino-Tapia

Inter-annual variability of wave climates is important for coastal risk assessment because these fluctuations can increase or decrease seasonal erosion risk (Wahl and Plant 2015). Understanding how long-term variability affects the seasonality of sediment transport is an important challenge in risk assessments (Toimil et al. 2020). There have been many attempts to quantify long-term variability in offshore wave climate, as this is the primary driver of coastal processes on sandy coasts. However, there is very little work on how the long-term variability of wave climate influences sediment transport. One of the most important drivers of sediment transport is the mean wave direction of incoming waves (Barnard et al. 2015; Hemer, Church, and Hunter 2010; Morim et al. 2019), although it is still not fully understood. An important contribution in this regard is the work of (Barnard et al. 2015), who found that El Nio Southern Oscillation (ENSO) dominates coastal vulnerability in the Pacific Ocean. On the other hand, several works at global scale (Godoi and Torres Junior 2020; Reguero, Losada, and Mendez 2019; Stopa and Cheung 2014) have found that ENSO is the climatic driver that most affects the interannual variability of the wave climate. However, understanding how ENSO impacts wave direction is still lacking.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/_M5Mxm7PnQg


2017 ◽  
Vol 7 (4) ◽  
pp. 65-72
Author(s):  
V. N. Shmagol' ◽  
V. L. Yarysh ◽  
S. P. Ivanov ◽  
V. I. Maltsev

<p>The long-term population dynamics of the red deer (<em>Cervus elaphus</em> L.) and European roe deer (<em>Capreolus</em> <em>capreolus</em> L.) at the mountain and forest zone of Crimea during 1980-2017 is presented. Fluctuations in numbers of both species are cyclical and partly synchronous. Period of oscillations in the population of red deer is about 25 years, the average duration of the oscillation period of number of roe deer is 12.3 years. During the fluctuations in the number the increasing and fall in population number of the red deer had been as 26-47 %, and roe deer – as 22-34 %. Basing on the dada obtained we have assumed that together with large-scale cycles of fluctuations in population number of both red deer and roe deer the short cycles of fluctuations in the number of these species with period from 3.5 to 7.5 years take place. Significant differences of the parameters of cyclical fluctuations in the number of roe deer at some sites of the Mountainous Crimea: breaches of synchronicity, as well as significant differences in the duration of cycles are revealed. The greatest deviations from the average values of parameters of long-term dynamics of the number of roe deer in Crimea are noted for groups of this species at two protected areas. At the Crimean Nature Reserve the cycle time of fluctuations of the numbers of roe deer was 18 years. At the Karadag Nature Reserve since 1976 we can see an exponential growth in number of roe deer that is continued up to the present time. By 2016 the number of roe deer reached 750 individuals at a density of 437 animals per 1 thousand ha. Peculiarity of dynamics of number of roe deer at some sites proves the existence in the mountain forest of Crimea several relatively isolated groups of deer. We assumed that "island" location of the Crimean populations of red deer and European roe deer, their relatively little number and influence of permanent extreme factors of both natural and anthropogenic origination have contributed to a mechanism of survival of these populations. The elements of such a mechanism include the following features of long-term dynamics of the population: the reduction in the period of cyclic population fluctuations, while maintaining their amplitude and the appearance of additional small cycles, providing more flexible response of the population to the impact of both negative and positive environmental factors. From the totality of the weather conditions for the Crimean population of roe deer the recurring periods of increases and downs in the annual precipitation amount may have relevance. There was a trend of increase in the roe deer population during periods of increasing annual precipitation.</p>


2021 ◽  
pp. 146801812110191
Author(s):  
William Hynes

New economic thinking and acting through a systemic approach could outline policy alternatives to tackle the global-scale systemic challenges of financial, economic, social and environmental emergencies, and help steer our recovery out of the current crisis. A systemic recovery requires an economic approach that balances several factors - markets and states, efficiency and resilience, growth and sustainability, national and global stability, short-term emergency measures and long-term structural change. To achieve this, we need to think beyond our policy silos, comprehend our interconnections, and build resilience into our systems.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Khuram Shahzad Ahmad ◽  
Muntaha Talat ◽  
Shaan Bibi Jaffri ◽  
Neelofer Shaheen

AbstractConventional treatment modes like chemotherapy, thermal and radiations aimed at cancerous cells eradication are marked by destruction pointing the employment of nanomaterials as sustainable and auspicious materials for saving human lives. Cancer has been deemed as the second leading cause of death on a global scale. Nanomaterials employment in cancer treatment is based on the utilization of their inherent physicochemical characteristics in addition to their modification for using as nano-carriers and nano-vehicles eluted with anti-cancer drugs. Current work has reviewed the significant role of different types of nanomaterials in cancer therapeutics and diagnostics in a systematic way. Compilation of review has been done by analyzing voluminous investigations employing ERIC, MEDLINE, NHS Evidence and Web of Science databases. Search engines used were Google scholar, Jstore and PubMed. Current review is suggestive of the remarkable performance of nanomaterials making them candidates for cancer treatment for substitution of destructive treatment modes through investigation of their physicochemical characteristics, utilization outputs and long term impacts in patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Heikki S. Lehtonen ◽  
Jyrki Aakkula ◽  
Stefan Fronzek ◽  
Janne Helin ◽  
Mikael Hildén ◽  
...  

AbstractShared socioeconomic pathways (SSPs), developed at global scale, comprise narrative descriptions and quantifications of future world developments that are intended for climate change scenario analysis. However, their extension to national and regional scales can be challenging. Here, we present SSP narratives co-developed with stakeholders for the agriculture and food sector in Finland. These are derived from intensive discussions at a workshop attended by approximately 39 participants offering a range of sectoral perspectives. Using general background descriptions of the SSPs for Europe, facilitated discussions were held in parallel for each of four SSPs reflecting very different contexts for the development of the sector up to 2050 and beyond. Discussions focused on five themes from the perspectives of consumers, producers and policy-makers, included a joint final session and allowed for post-workshop feedback. Results reflect careful sector-based, national-level interpretations of the global SSPs from which we have constructed consensus narratives. Our results also show important critical remarks and minority viewpoints. Interesting features of the Finnish narratives compared to the global SSP narratives include greater emphasis on environmental quality; significant land abandonment in SSPs with reduced livestock production and increased plant-based diets; continued need for some farm subsidies across all SSPs and opportunities for diversifying domestic production under scenarios of restricted trade. Our results can contribute to the development of more detailed national long-term scenarios for food and agriculture that are both relevant for local stakeholders and researchers as well as being consistent with global scenarios being applied internationally.


Author(s):  
Ben Raffield

AbstractIn recent years, archaeological studies of long-term change and transformation in the human past have often been dominated by the discussion of dichotomous processes of ‘collapse’ and ‘resilience’. These discussions are frequently framed in relatively narrow terms dictated by specialist interests that place an emphasis on the role of single ‘trigger’ factors as motors for historic change. In order to address this issue, in this article I propose that the study of the ‘shatter zone’—a term with origins in physical geography and geopolitics that has been more recently harnessed in anthropological research—has the potential to facilitate multi-scalar, interdisciplinary analyses of the ways in which major historical changes unfold across both space and time, at local, regional, and inter-regional levels. This article unpacks the concept of the shatter zone and aligns this with existing archaeological frameworks for the study of long-term adaptive change. I then situate these arguments within the context of recent studies of colonial interaction and conflict in the Eastern Woodlands of North America during the sixteenth to eighteenth century. The study demonstrates how a more regulated approach to the shatter zone has the potential to yield new insights on the ways in which populations mitigate and react to instability and change while also facilitating comparative studies of these processes on a broader, global scale.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
Andrew Hazelton ◽  
Ghassan J. Alaka ◽  
Levi Cowan ◽  
Michael Fischer ◽  
Sundararaman Gopalakrishnan

The early stages of a tropical cyclone can be a challenge to forecast, as a storm consolidates and begins to grow based on the local and environmental conditions. A high-resolution ensemble of the Hurricane Analysis and Forecast System (HAFS) is used to study the early intensification of Hurricane Dorian, a catastrophic 2019 storm in which the early period proved challenging for forecasters. There was a clear connection in the ensemble between early storm track and intensity: stronger members moved more northeast initially, although this result did not have much impact on the long-term track. The ensemble results show several key factors determining the early evolution of Dorian. Large-scale divergence northeast of the tropical cyclone (TC) appeared to favor intensification, and this structure was present at model initialization. There was also greater moisture northeast of the TC for stronger members at initialization, favoring more intensification and downshear development of the circulation as these members evolved. This study highlights the complex interplay between synoptic and storm scale processes in the development and intensification of early-stage tropical cyclones.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 505
Author(s):  
Yonglan Tang ◽  
Guirong Xu ◽  
Rong Wan ◽  
Xiaofang Wang ◽  
Junchao Wang ◽  
...  

It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at representative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed is small in the morning, large at noon and largest at night, presenting a similar diurnal cycle to that of convective activity over the TP, which is conductive to nighttime precipitation. Additionally, the inverse layer is accompanied by the inverse humidity layer, and wind speed presents multi-peaks distribution in its vertical structure. Both of these are closely related with the underlying surface and topography of Jiulong. More studies on physical mechanism and numerical simulation are necessary for better understanding the atmospheric phenomenon over the TP.


Sign in / Sign up

Export Citation Format

Share Document