scholarly journals Estimating Actual Evapotranspiration over Croplands Using Vegetation Index Methods and Dynamic Harvested Area

2021 ◽  
Vol 13 (24) ◽  
pp. 5167
Author(s):  
Neda Abbasi ◽  
Hamideh Nouri ◽  
Kamel Didan ◽  
Armando Barreto-Muñoz ◽  
Sattar Chavoshi Borujeni ◽  
...  

Advances in estimating actual evapotranspiration (ETa) with remote sensing (RS) have contributed to improving hydrological, agricultural, and climatological studies. In this study, we evaluated the applicability of Vegetation-Index (VI) -based ETa (ET-VI) for mapping and monitoring drought in arid agricultural systems in a region where a lack of ground data hampers ETa work. To map ETa (2000–2019), ET-VIs were translated and localized using Landsat-derived 3- and 2-band Enhanced Vegetation Indices (EVI and EVI2) over croplands in the Zayandehrud River Basin (ZRB) in Iran. Since EVI and EVI2 were optimized for the MODerate Imaging Spectroradiometer (MODIS), using these VIs with Landsat sensors required a cross-sensor transformation to allow for their use in the ET-VI algorithm. The before- and after- impact of applying these empirical translation methods on the ETa estimations was examined. We also compared the effect of cropping patterns’ interannual change on the annual ETa rate using the maximum Normalized Difference Vegetation Index (NDVI) time series. The performance of the different ET-VIs products was then evaluated. Our results show that ETa estimates agreed well with each other and are all suitable to monitor ETa in the ZRB. Compared to ETc values, ETa estimations from MODIS-based continuity corrected Landsat-EVI (EVI2) (EVIMccL and EVI2MccL) performed slightly better across croplands than those of Landsat-EVI (EVI2) without transformation. The analysis of harvested areas and ET-VIs anomalies revealed a decline in the extent of cultivated areas and a loss of corresponding water resources downstream. The findings show the importance of continuity correction across sensors when using empirical algorithms designed and optimized for specific sensors. Our comprehensive ETa estimation of agricultural water use at 30 m spatial resolution provides an inexpensive monitoring tool for cropping areas and their water consumption.

2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


2021 ◽  
Vol 13 (6) ◽  
pp. 1144
Author(s):  
Mahendra Bhandari ◽  
Shannon Baker ◽  
Jackie C. Rudd ◽  
Amir M. H. Ibrahim ◽  
Anjin Chang ◽  
...  

Drought significantly limits wheat productivity across the temporal and spatial domains. Unmanned Aerial Systems (UAS) has become an indispensable tool to collect refined spatial and high temporal resolution imagery data. A 2-year field study was conducted in 2018 and 2019 to determine the temporal effects of drought on canopy growth of winter wheat. Weekly UAS data were collected using red, green, and blue (RGB) and multispectral (MS) sensors over a yield trial consisting of 22 winter wheat cultivars in both irrigated and dryland environments. Raw-images were processed to compute canopy features such as canopy cover (CC) and canopy height (CH), and vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Excess Green Index (ExG), and Normalized Difference Red-edge Index (NDRE). The drought was more severe in 2018 than in 2019 and the effects of growth differences across years and irrigation levels were visible in the UAS measurements. CC, CH, and VIs, measured during grain filling, were positively correlated with grain yield (r = 0.4–0.7, p < 0.05) in the dryland in both years. Yield was positively correlated with VIs in 2018 (r = 0.45–0.55, p < 0.05) in the irrigated environment, but the correlations were non-significant in 2019 (r = 0.1 to −0.4), except for CH. The study shows that high-throughput UAS data can be used to monitor the drought effects on wheat growth and productivity across the temporal and spatial domains.


2018 ◽  
Vol 37 (3) ◽  
pp. 219-236 ◽  
Author(s):  
Khalid Mahmood ◽  
Zia Ul-Haq ◽  
Fiza Faizi ◽  
Syeda A. Batol

This study compares the suitability of different satellite-based vegetation indices (VIs) for environmental hazard assessment of municipal solid waste (MSW) open dumps. The compared VIs, as bio-indicators of vegetation health, are normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI) that have been subject to spatio-temporal analysis. The comparison has been made based on three criteria: one is the exponential moving average (EMA) bias, second is the ease in visually finding the distance of VI curve flattening, and third is the radius of biohazardous zone in relation to the waste heap dumped at them. NDVI has been found to work well when MSW dumps are surrounded by continuous and dense vegetation, otherwise, MSAVI is a better option due to its ability for adjusting soil signals. The hierarchy of the goodness for least EMA bias is MSAVI> SAVI> NDVI with average bias values of 101 m, 203 m, and 270 m, respectively. Estimations using NDVI have been found unable to satisfy the direct relationship between waste heap and hazardous zone size and have given a false exaggeration of 374 m for relatively smaller dump as compared to the bigger one. The same false exaggeration for SAVI and MSAVI is measured to be 86 m and -14 m, respectively. So MSAVI is the only VI that has shown the true relation of waste heap and hazardous zone size. The best visualization of distance-dependent vegetation health away from the dumps is also provided by MSAVI.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 346-353 ◽  
Author(s):  
Francisca López-Granados ◽  
Montse Jurado-Expósito ◽  
Jose M. Peña-Barragán ◽  
Luis García-Torres

Field research was conducted to determine the potential of hyperspectral and multispectral imagery for late-season discrimination and mapping of grass weed infestations in wheat. Differences in reflectance between weed-free wheat and wild oat, canarygrass, and ryegrass were statistically significant in most 25-nm-wide wavebands in the 400- and 900-nm spectrum, mainly due to their differential maturation. Visible (blue, B; green, G; red, R) and near infrared (NIR) wavebands and five vegetation indices: Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), R/B, NIR-R and (R − G)/(R + G), showed potential for discriminating grass weeds and wheat. The efficiency of these wavebands and indices were studied by using color and color-infrared aerial images taken over three naturally infested fields. In StaCruz, areas infested with wild oat and canarygrass patches were discriminated using the indices R, NIR, and NDVI with overall accuracies (OA) of 0.85 to 0.90. In Florida–West, areas infested with wild oat, canarygrass, and ryegrass were discriminated with OA from 0.85 to 0.89. In Florida–East, for the discrimination of the areas infested with wild oat patches, visible wavebands and several vegetation indices provided OA of 0.87 to 0.96. Estimated grass weed area ranged from 56 to 71%, 43 to 47%, and 69 to 80% of the field in the three locations, respectively, with per-class accuracies from 0.87 to 0.94. NDVI was the most efficient vegetation index, with a highly accurate performance in all locations. Our results suggest that mapping grass weed patches in wheat is feasible with high-resolution satellite imagery or aerial photography acquired 2 to 3 wk before crop senescence.


2012 ◽  
Vol 84 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Fábio M. Breunig ◽  
Lênio S. Galvão ◽  
Antônio R. Formaggio ◽  
José C.N. Epiphanio

Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI1640 and NDWI2120) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.


2018 ◽  
Vol 15 (35) ◽  
pp. 133-141
Author(s):  
Israa J. Muhsin

Karbala province regarded one part significant zones in Iraq and considered an economic resource of vegetation such as trees of fruits, sieve and other vegetation. This research aimed to utilize Normalized Difference Vegetation index (NDVI) and Subtracted (NDVI) for investigating the current vegetation cover at last four decay. The Normalized Difference Vegetation Index (NDVI) is the most extensively used satellite index of vegetation health and density. The primary goals of this research are gather a gathering of studied area (Karbala province) satellite images in sequence time for a similar region, these image captured by Landsat (TM 1985, TM 1995, ETM+ 2005 and Landsat 8 OLI (Operational Land Imager) 2015. Preprocessing such gap filling consider being vital stride has been implied on the defected image which captured in Landsat 2005 and isolate the regions of studied region. The Assessment vegetal cover changes of the studied area in this paper has been implemented using Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI) and change detection techniques such as Subtracted (NDVI) method also have been used to detect the change in vegetal cover of the studied region. Many histogram and statistical properties were illustrated has been computed. From The results shows there are increasing in the vegetal cover from 1985 to 2015.


2012 ◽  
Vol 4 (5) ◽  
pp. 897 ◽  
Author(s):  
Luana Portz ◽  
Laurindo Antonio Guasselli ◽  
Iran Carlos Stalliviere Corrêa

Neste estudo foram analisadas as variações espaciais e temporais do Índice de Vegetação por Diferença Normalizada (NDVI) na lagoa do Peixe, no litoral do Rio Grande do Sul. Para alcançar o objetivo proposto foram utilizadas imagens de satélite Landsat TM5, entre os anos de 1986 e 2009, seguindo os procedimentos de elaboração de mosaico das cenas, verificação de campo, geração das imagens de NDVI, análise de dados de precipitação acumulada, geração dos mapas finais e análise qualitativa dos resultados obtidos. Os resultados obtidos com a geração de imagens de NDVI mostraram que a análise espaço-temporal associada aos dados de precipitação fornecem informações de valiosa importância sobre a dinâmica da lagoa do Peixe. A importância  do NDVI neste estudo se destaca pelo contraste existente entre água e vegetação, realçando os diferentes níveis de água sobre os bancos vegetados presentes na borda oeste da lagoa. Estes bancos são um importante controlador da dinâmica de circulação lagunar, onde em períodos de seca ocorre a compartimentação da lagoa, enquanto que em épocas de grande precipitação e acumulação de água estes bancos ficam submersos. Palavras-chave: Landsat TM, série temporal, Parque Nacional.  Spatial and Temporal Variation of NDVI in the Peixe Lagoon, RS  ABSTRACTThis paper analyzed the spatial and temporal variation of Normalized Difference Vegetation Index (NDVI) in the Peixe lagoon. To reach the purpose,  the NDVI time-series were collected from the study area between year 1986 and 2009 derived from Landsat TM5 satellite. The adopted methodology may be subdivided into the following steps: mosaic of scenes, fild verification, generation of NDVI time-series and qualitative analysis, in addition, it was complemented with rainfall analysis.  The results obtained with the NDVI time-series associated with the rainfall analysis data provide valuable information about the environmental dynamics. The importance of NDVI in this work is given by the contrast between water and vegetation, highlighting the different levels of water over vegetated banks present on the western edge of the lagoon. These banks are an important driver circulation in the lagoon, where in periods of drought occurs the partitioning of the lagoo, while in periods of high precipitation and accumulation of water they are submerged.    Keywords: Landsat TM, time-series, National Park.


2020 ◽  
Vol 12 (14) ◽  
pp. 2195 ◽  
Author(s):  
Blanka Vajsová ◽  
Dominique Fasbender ◽  
Csaba Wirnhardt ◽  
Slavko Lemajic ◽  
Wim Devos

The availability of large amounts of Sentinel-2 data has been a trigger for its increasing exploitation in various types of applications. It is, therefore, of importance to understand the limits above which these data still guarantee a meaningful outcome. This paper proposes a new method to quantify and specify restrictions of the Sentinel-2 imagery in the context of checks by monitoring, a newly introduced control approach within the European Common Agriculture Policy framework. The method consists of a comparison of normalized difference vegetation index (NDVI) time series constructed from data of different spatial resolution to estimate the performance and limits of the coarser one. Using similarity assessment of Sentinel-2 (10 m pixel size) and PlanetScope (3 m pixel size) NDVI time series, it was estimated that for 10% out of 867 fields less than 0.5 ha in size, Sentinel-2 data did not provide reliable evidence of the activity or state of the agriculture field over a given timeframe. Statistical analysis revealed that the number of clean or full pixels and the proportion of pixels lost after an application of a 5-m (1/2 pixel) negative buffer are the geospatial parameters of the field that have the highest influence on the ability of the Sentinel-2 data to qualify the field’s state in time. We specified the following limiting criteria: at least 8 full pixels inside a border and less than 60% of pixels lost. It was concluded that compliance with the criteria still assures a high level of extracted information reliability. Our research proved the promising potential, which was higher than anticipated, of Sentinel-2 data for the continuous state assessment of small fields. The method could be applied to other sensors and indicators.


2019 ◽  
Vol 19 (8) ◽  
pp. 1685-1702 ◽  
Author(s):  
Juan José Martín-Sotoca ◽  
Antonio Saa-Requejo ◽  
Rubén Moratiel ◽  
Nicolas Dalezios ◽  
Ioannis Faraslis ◽  
...  

Abstract. Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used in countries like the USA, Canada and Spain for damaged pasture and forage insurance over the last few years. This type of agricultural insurance is called satellite-index-based insurance (SIBI). In SIBI, the occurrence of damage is defined as normal distributions. In this work a pasture area at the north of the Community of Madrid (Spain) has been delimited by means of Moderate Resolution Imaging Spectroradiometer (MODIS) images. A statistical analysis of NDVI histograms was applied to seek for alternative distributions using the maximum likelihood method and χ2 test. The results show that the normal distribution is not the optimal representation and the generalized extreme value (GEV) distribution presents a better fit through the year based on a quality estimator. A comparison between normal and GEV is shown with respect to the probability under a NDVI threshold value throughout the year. This suggests that an a priori distribution should not be selected and a percentile methodology should be used to define a NDVI damage threshold rather than the average and standard deviation, typically of normal distributions. Highlights. The GEV distribution provides better fit to the NDVI historical observations than the normal one. Differences between normal and GEV distributions are higher during spring and autumn, which are transition periods in the precipitation regimen. NDVI damage threshold shows evident differences using normal and GEV distributions both covering the same probability (24.20 %). NDVI damage threshold values based on percentile calculation are proposed as an improvement in the index-based insurance in damaged pasture.


Sign in / Sign up

Export Citation Format

Share Document