scholarly journals Single Epoch Ambiguity Resolution of Small-Scale CORS with Multi-Frequency GNSS

2021 ◽  
Vol 14 (1) ◽  
pp. 13
Author(s):  
Shengyue Ji ◽  
Qianli Zheng ◽  
Duojie Weng ◽  
Wu Chen ◽  
Zhenjie Wang ◽  
...  

The network real-time kinematic (RTK) technique uses continuously operating reference stations (CORS) within a geographic area to model the distance dependent errors, allowing users in the area to solve ambiguities. A key step in network RTK is to fix ambiguities between multiple reference stations. When a new satellite rises or when maintenance happens, many unknown parameters are involved in the mathematical model, and traditional methods take some time to estimate the integer ambiguities reliably. The purpose of this study is the single-epoch ambiguity resolution on small-scale CORS network with inter-station distance of around 50 km. A new differencing scheme is developed to explore the full potential of multi-frequency Global Navigation Satellite System (GNSS). In this scheme, a differencing operation is formed between satellites with the closest mapping functions. With the new differencing scheme, tropospheric error can be mostly neglected after the correction, as well as the double-differencing operation. Numerical tests based on two baselines of 49 km and 35 km show that the success rate of ambiguity resolution can reach more than 90%. The single-epoch ambiguity resolution for reference stations brings many benefits to the network RTK service, for example, the instantaneous recovery after maintenance or when a new satellite rises.

2021 ◽  
Vol 13 (9) ◽  
pp. 1621
Author(s):  
Duojie Weng ◽  
Shengyue Ji ◽  
Yangwei Lu ◽  
Wu Chen ◽  
Zhihua Li

The differential global navigation satellite system (DGNSS) is an enhancement system that is widely used to improve the accuracy of single-frequency receivers. However, distance-dependent errors are not considered in conventional DGNSS, and DGNSS accuracy decreases when baseline length increases. In network real-time kinematic (RTK) positioning, distance-dependent errors are accurately modelled to enable ambiguity resolution on the user side, and standard Radio Technical Commission for Maritime Services (RTCM) formats have also been developed to describe the spatial characteristics of distance-dependent errors. However, the network RTK service was mainly developed for carrier-phase measurements on professional user receivers. The purpose of this study was to modify the local-area DGNSS through the use of network RTK corrections. Distance-dependent errors can be reduced, and accuracy for a longer baseline length can be improved. The results in the low-latitude areas showed that the accuracy of the modified DGNSS could be improved by more than 50% for a 17.9 km baseline during solar active years. The method in this paper extends the use of available network RTK corrections with high accuracy to normal local-area DGNSS applications.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Wanke Liu ◽  
Mingkui Wu ◽  
Xiaohong Zhang ◽  
Wang Wang ◽  
Wei Ke ◽  
...  

AbstractThe BeiDou global navigation satellite system (BDS-3) constellation deployment has been completed on June 23, 2020, with a full constellation comprising 30 satellites. In this study, we present the performance assessment of single-epoch Real-Time Kinematic (RTK) positioning with tightly combined BeiDou regional navigation satellite system (BDS-2) and BDS-3. We first investigate whether code and phase Differential Inter-System Biases (DISBs) exist between the legacy B1I/B3I signals of BDS-3/BDS-2. It is discovered that the DISBs are in fact about zero for the baselines with the same or different receiver types at their endpoints. These results imply that BDS-3 and BDS-2 are fully interoperable and can be regarded as one constellation without additional DISBs when the legacy B1I/B3I signals are used for precise relative positioning. Then we preliminarily evaluate the single-epoch short baseline RTK performance of tightly combined BDS-2 and the newly completed BDS-3. The performance is evaluated through ambiguity resolution success rate, ambiguity dilution of precision, as well as positioning accuracy in kinematic and static modes using the datasets collected in Wuhan. Experimental results demonstrate that the current BDS-3 only solutions can deliver comparable ambiguity resolution performance and much better positioning accuracy with respect to BDS-2 only solutions. Moreover, the RTK performance is much improved with tightly combined BDS-3/BDS-2, particularly in challenging or harsh conditions. The single-frequency single-epoch tightly combined BDS-3/BDS-2 solution could deliver an ambiguity resolution success rate of 96.9% even with an elevation cut-off angle of 40°, indicating that the tightly combined BDS-3/BDS-2 could achieve superior RTK positioning performance in the Asia–Pacific region. Meanwhile, the three-dimensional (East/North/Up) positioning accuracy of BDS-3 only solution (0.52 cm/0.39 cm/2.14 cm) in the kinematic test is significantly better than that of the BDS-2 only solution (0.85 cm/1.02 cm/3.01 cm) due to the better geometry of the current BDS-3 constellation. The tightly combined BDS-3/BDS-2 solution can provide the positioning accuracy of 0.52 cm, 0.22 cm, and 1.80 cm, respectively.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4462
Author(s):  
Haiyang Li ◽  
Guigen Nie ◽  
Dezhong Chen ◽  
Shuguang Wu ◽  
Kezhi Wang

Deformation monitoring of engineering structures using the advanced Global Navigation Satellite System (GNSS) has attracted research interest due to its high-precision, constant availability and global coverage. However, GNSS application requires precise coordinates of points of interest through quick and reliable resolution of integer ambiguities in carrier phase measurements. Conventional integer ambiguity resolution algorithms have been extensively researched indeed in the past few decades, although the application of GNSS to structural health monitoring is still limited. In particular, known a priori information related to the structure of a body of interest is not normally considered. This study proposes a composite strategy that incorporates modified least-squares ambiguity decorrelation adjustment (MLAMBDA) method with priori information of the structural deformation. Data from the observation sites of Baishazhou Bridge are used to test method performance. Compared to MLAMBDA methods that do not consider priori information, the ambiguity success rate (ASR) improves by 20% for global navigation satellite system (GLONASS) and 10% for Multi-GNSS, while running time is reduced by 60 s for a single system and 180 s for Multi-GNSS system. Experimental results of Teaching Experiment Building indicate that our constrained MLAMBDA method improves positioning accuracy and meets the requirements of structural health monitoring, suggesting that the proposed strategy presents an improved integer ambiguity resolution algorithm.


Author(s):  
Chengleng Han ◽  
Lin Xu ◽  
Mohamed A. A. Abdelkareem ◽  
Enkang Cui ◽  
Junyi Zou ◽  
...  

Abstract This paper introduced a new type of an active suspension named as In-Arm Torsional Electromagnetic Active Suspension (ITEAS) according to its suspension characteristics. The proposed ITEAS is capable of actively controlling body attitude and adjusting the stiffness and damping of a suspension system in a larger scale. The structure of the ITEAS system is composing of a mechanical displacement adjustment device, a two-chamber vane damper connected by an electromagnetic valve, two torsion bars and necessary connection units such as trailing arms. Based on the hydraulic theory and fluid mechanics, the mathematical model of the vane damper was established and the external characteristic curve of the damper was obtained through the simulations. Regarding to the ITEAS stiffness and damping analysis, a quarter dynamic vehicle model was established and simulated by the AMESim platform. The results showed that the automobile ride based on the ITEAS system was reasonable as well as the functions of body height adjustment and suspension controllability were available. Thereafter, a small-scale prototype has been built to calibrate the unknown parameters for further research on ITEAS.


2019 ◽  
Vol 11 (2) ◽  
pp. 116 ◽  
Author(s):  
Guorui Xiao ◽  
Pan Li ◽  
Yang Gao ◽  
Bernhard Heck

With the modernization of Global Navigation Satellite System (GNSS), triple- or multi-frequency signals have become available from more and more GNSS satellites. The additional signals are expected to enhance the performance of precise point positioning (PPP) with ambiguity resolution (AR). To deal with the additional signals, we propose a unified modeling strategy for multi-frequency PPP AR based on raw uncombined observations. Based on the unified model, the fractional cycle biases (FCBs) generated from multi-frequency observations can be flexibly used, such as for dual- or triple- frequency PPP AR. Its efficiency is verified with Galileo and BeiDou triple-frequency observations collected from globally distributed MGEX stations. The estimated FCB are assessed with respect to residual distributions and standard deviations. The obtained results indicate good consistency between the input float ambiguities and the generated FCBs. To assess the performance of the triple-frequency PPP AR, 11 days of MGEX data are processed in three-hour sessions. The positional biases in the ambiguity-fixed solutions are significantly reduced compared with the float solutions. The improvements are 49.2%, 38.3%, and 29.6%, respectively, in east/north/up components for positioning with BDS, while the corresponding improvements are 60.0%, 29.0%, and 21.1% for positioning with Galileo. These results confirm the efficiency of the proposed approach, and that the triple-frequency PPP AR can bring an obvious benefit to the ambiguity-float PPP solution.


2014 ◽  
Vol 67 (6) ◽  
pp. 1109-1119 ◽  
Author(s):  
Shengyue Ji ◽  
Xiaolong Wang ◽  
Ying Xu ◽  
Zhenjie Wang ◽  
Wu Chen ◽  
...  

Fast high precision relative Global Navigation Satellite System (GNSS) positioning is very important to various applications and ambiguity resolution is a key requirement. It has been a continuing challenge to determine and fix GNSS carrier-phase ambiguity, especially for medium- and long-distance baselines. In past research, with dual-frequency band Global Positioning System (GPS), it is almost impossible for fast ambiguity resolution of medium- and long-distance baselines mainly due to the ionospheric and tropospheric effects. With the launch of the BeiDou system, triple-frequency band GNSS observations are available for the first time. This research aims to test the ambiguity resolution performance with BeiDou triple-frequency band observations. In this research, two mathematical models are compared: zenith tropospheric delay as an unknown parameter versus corrected tropospheric delay. The ambiguity resolution performance is investigated in detail with BeiDou observations. Different distance baselines are tested: 45 km, 70 km and 100 km and the performances are investigated with different elevation cut-off angles. Also the performance with BeiDou alone and combined BeiDou and GPS are compared. Experimental results clearly show that with practical observations of triple-frequency bands, ambiguity of medium- or long-distance baselines can be fixed. The results also show that: the performance of ambiguity resolution with an elevation cutoff angle of 20° is much better than that of 15°; The performance with tropospheric effect corrected is slightly better than that with tropospheric effect as an estimated parameter; Dual-frequency band GPS observations will benefit ambiguity resolution of integrated BeiDou and GPS.


2021 ◽  
Vol 13 (4) ◽  
pp. 778
Author(s):  
Yangyang Li ◽  
Mingxing Shen ◽  
Lei Yang ◽  
Chenlong Deng ◽  
Weiming Tang ◽  
...  

The European Global Navigation Satellite System Galileo is gradually deploying its constellation. In order to provide reliable navigation and position services, the effectiveness and reliability of ambiguity resolution between reference stations is necessary in network real-time kinematic (NRTK). The multifrequency signal of Galileo could much enhance the ambiguity resolution (AR) reliability and robustness. In this study, to exploit full advantage of this, the geometry-free (GF) TCAR and ionospheric-free (IF) triple-carrier ambiguity resolution (TCAR) methods were utilized in solving the ambiguity in the Hong Kong area, which is an ionosphere disturbance active area, and compared with each other. The IF TCAR method was then used to combine multi-systems to improve Galileo E1 AR performance, which is named as the combined IF (CIF) TCAR method. Three experiments were carried out in the Hong Kong area and the results showed that the Galileo-only system could fix ambiguities on all satellite pairs correctly and reliably by the IF TCAR method, while the GF TCAR method showed a weaker performance. The wide-lane (WL) convergence time of the IF TCAR method is improved by about 37.6%. The IF TCAR method with respect to the GF TCAR method could improve the WL accuracy by 21.6% and the E1 accuracy by 72.7%, respectively. Compared with GPS-only TCAR or Galileo-only TCAR, the ambiguity accuracy and the convergence time of the CIF TCAR method, which combines GPS and Galileo, could be improved by about 25.7% and 47.1%, respectively.


2021 ◽  
Vol 13 (10) ◽  
pp. 1967
Author(s):  
Meng Wang ◽  
Tao Shan ◽  
Wanwei Zhang ◽  
Hao Huan

The utilization of Global Navigation Satellite System (GNSS) is becoming an attractive navigation approach for geostationary orbit (GEO) satellites. A high-sensitivity receiver compatible with Global Position System (GPS) developed by the United States and BeiDou Navigation Satellite System (BDS) developed by China has been used in a GEO satellite named TJS-5 to demonstrate feasibility of real-time navigation. According to inflight data, the GNSS signal characteristics including availability, position dilution of precision (PDOP), carrier-to-noise ratio (C/N0), observations quantity and accuracy are analyzed. The mean number of GPS and GPS + BDS satellites tracked are 7.4 and 11.7 and the mean PDOP of GPS and GPS + BDS are 10.24 and 3.91, respectively. The use of BDS significantly increases the number of available navigation satellites and improves the PDOP. The number of observations with respect to C/N0 is illustrated in detail. The standard deviation of the pseudorange noises are less than 4 m, and the corresponding carrier phase noises are mostly less than 8 mm. We present the navigation performance using only GPS observations and GPS + BDS observations combination at different weights through comparisons with the precision reference orbits. When GPS combined with BDS observations, the root mean square (RMS) of the single-epoch least square position accuracy can improve from 32.1 m to 16.5 m and the corresponding velocity accuracy can improve from 0.238 m/s to 0.165 m/s. The RMS of real-time orbit determination position accuracy is 5.55 m and the corresponding velocity accuracy is 0.697 mm/s when using GPS and BDS combinations. Especially, the position accuracy in x-axis direction reduced from 7.24 m to 4.09 m when combined GPS with BDS observations.


Sign in / Sign up

Export Citation Format

Share Document