scholarly journals Morphological and Physiological Screening to Predict Lettuce Biomass Production in Controlled Environment Agriculture

2022 ◽  
Vol 14 (2) ◽  
pp. 316
Author(s):  
Changhyeon Kim ◽  
Marc W. van Iersel

Fast growth and rapid turnover is an important crop trait in controlled environment agriculture (CEA) due to its high cost. An ideal screening approach for fast-growing cultivars should detect desirable phenotypes non-invasively at an early growth stage, based on morphological and/or physiological traits. Hence, we established a rapid screening protocol based on a simple chlorophyll fluorescence imaging (CFI) technique to quantify the projected canopy size (PCS) of plants, combined with electron transport rate (ETR) measurements using a chlorophyll fluorometer. Eleven lettuce cultivars (Lactuca sativa), selected based on morphological differences, were grown in a greenhouse and imaged twice a week. Shoot dry weight (DW) of green cultivars at harvest 51 days after germination (DAG) was correlated with PCS at 13 DAG (R2 = 0.74), when the first true leaves had just appeared and the PCS was <8.5 cm2. However, early PCS of high anthocyanin (red) cultivars was not predictive of DW. Because light absorption by anthocyanins reduces the amount of photons available for photosynthesis, anthocyanins lower light use efficiency (LUE; DW/total incident light on canopy over the cropping cycle) and reduce growth. Additionally, the total incident light on the canopy throughout the cropping cycle explained 90% and 55% of variability in DW within green and red cultivars, respectively. Estimated leaf level ETR at a photosynthetic photon flux density (PPFD) of 200 or 1000 µmol m−2 s−1 were not correlated with DW in either green or red cultivars. In conclusion, early PCS quantification is a useful tool for the selection of fast-growing green lettuce phenotypes. However, this approach may not work in cultivars with high anthocyanin content because anthocyanins direct excitation energy away from photosynthesis and growth, weakening the correlation between incident light and growth.

2018 ◽  
Vol 98 (6) ◽  
pp. 1321-1330
Author(s):  
Jaimin S. Patel ◽  
Leora Radetsky ◽  
Mark S. Rea

Sweet basil (Ocimum basilicum L.) is primarily used for culinary purposes, but it is also used in the fragrance and medicinal industries. In the last few years, global sweet basil production has been significantly impacted by downy mildew caused by Peronospora belbahrii Thines. Nighttime exposure to red light has been shown to inhibit sporulation of P. belbahrii. The objective of this study was to determine if nighttime exposure to red light from light-emitting diodes (λmax = 625 nm) could increase plant growth (plant height and leaf size) and yield (number and weight of leaves) in basil plants. In two sets of greenhouse experiments, red light was applied at a photosynthetic photon flux density of 60 μmol m−2 s−1 during the otherwise dark night for 10 h (from 2000 to 0600). The results demonstrate that exposure to red light at night can increase the number of basil leaves per plant, plant height, leaf size (length and width), and leaf fresh and dry weight compared with plants in darkness at night. The addition of incremental red light at night has the potential to be cost-effective for fresh organic basil production in controlled environments.


1988 ◽  
Vol 39 (5) ◽  
pp. 863 ◽  
Author(s):  
M Zeroni ◽  
J Gale

Rose plants (Rosa hybrida cv. Sonia, Syn. Sweet Promise) were placed in growth chambers under conditions resembling winter in a controlled environment greenhouse in the desert: mild temperatures, high incident photosynthetic photon flux density (PPFD), high air humidity and 10.5 h daylenght. Concentrations of CO2 in the air were maintained throughout the day at 320, 600 or 1200 8l l-1 with approximately 350 8l l-1 at night. Plant growth (length, fresh and gry weight), development (breaks, blindness), flower yield and flower quality (flower bud diameter, fresh weight and cane length) indices were monitored throughout three consecutive flowering cycles. CO2 supplementation caused an increase in leaf resistance to water vapour diffusion, accompanied by a reduction in the rate of transpiration per unit leaf area, Total leaf area increased at higher CO2 concentrations. Water use per plant did not change. Plant water potentials increased with rising CO2 concentrations. Growth, development, flower yield and flower quality were greatly enahnced in the CO2-enriched atmosphere. The response of growth and development to CO2 supplementation tended to decrease slightly with time when calculated per branch, but increased when calculated per plant. Flower yield and qualtiy did not change with time. The highest CO2 treatment resulted in a sustained, approximately 50% increase in yield, and doubling of the above quality indices throughout the three growth cycles.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 870 ◽  
Author(s):  
Filippos Bantis ◽  
Athanasios Koukounaras ◽  
Anastasios S. Siomos ◽  
Kalliopi Radoglou ◽  
Christodoulos Dangitsis

Watermelon is cultivated worldwide and is mainly grafted onto interspecific squash rootstocks. Light-emitting diodes (LEDs) can be implemented as light sources during indoor production of both species and their spectral quality is of great importance. The objective of the present study was to determine the optimal emission of LEDs with wide wavelength for the production of watermelon and interspecific squash seedlings in a growth chamber. Conditions were set at 22/20 °C temperature (day/night), 16 h photoperiod, and 85 ± 5 μmol m−2 s−1 photosynthetic photon flux density. Illumination was provided by fluorescent (FL, T0) lamps or four LEDs (T1, T2, T3, and T4) emitting varying wide spectra. Watermelon seedlings had greater shoot length, stem diameter, cotyledon area, shoot dry weight-to-length (DW/L) ratio, and Dickson’s quality index (DQI) under T1 and T3, while leaf area and shoot dry weight (DW) had higher values under T1. Interspecific squash seedlings had greater stem diameter, and shoot and root DW under T1 and T3, while leaf and cotyledon areas were favored under T1. In both species, T0 showed inferior development. It could be concluded that a light source with high red emission, relatively low blue emission, and a red:far-red ratio of about 3 units seems ideal for the production of high-quality watermelon (scion) and interspecific squash (rootstock) seedlings.


1984 ◽  
Vol 14 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Leslie C. Tolley ◽  
B. R. Strain

Mathematical growth analysis techniques were used to assess the effects of atmospheric carbon dioxide enrichment on growth and biomass partitioning of Liquidambarstyraciflua L. (sweetgum) and Pinustaeda L. (loblolly pine) seedlings. Plants were grown from seed under high (1000 μmol•m−2•s−1) and low (250 μmol•m−2•s−1) photosynthetic photon flux density at CO2 concentrations of 350, 675, and 1000 μL•L−1 for 84 or 112–113 days. Elevated atmospheric CO2 concentration significantly increased height, leaf area, basal stem diameter, and total dry weight of sweetgum seedlings grown under high irradiance and to a lesser extent under low irradiance. Increases in dry matter accumulation were associated with early CO2 enhancement of net assimilation rate, but increases in amount of leaf surface area contributed more towards maintenance of larger size as seedlings aged. For sweetgum seedlings in particular, reduction of growth by low irradiance under normal atmospheric CO2 was compensated for by growing plants with elevated CO2. In contrast, elevated CO2 concentration produced no significant increase in growth of loblolly pine seedlings.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maral Hosseinzadeh ◽  
Sasan Aliniaeifard ◽  
Aida Shomali ◽  
Fardad Didaran

Abstract Biomass partitioning is one of the pivotal determinants of crop growth management, which is influenced by environmental cues. Light and CO2 are the main drivers of photosynthesis and biomass production in plants. In this study, the effects of CO2 levels: ambient 400 ppm (a[CO2]) and elevated to 1,000 ppm (e[CO2]) and different light intensities (75, 150, 300, 600 μmol·m−2·s−1 photosynthetic photon flux density – PPFD) were studied on the growth, yield, and biomass partitioning in chrysanthemum plants. The plants grown at higher light intensity had a higher dry weight (DW) of both the vegetative and floral organs. e[CO2] diminished the stimulating effect of more intensive light on the DW of vegetative organs, although it positively influenced inflorescence DW. The flowering time in plants grown at e[CO2] and light intensity of 600 μmol·m−2·s−1 occurred earlier than that of plants grown at a[CO2]. An increase in light intensity induced the allocation of biomass to inflorescence and e[CO2] enhanced the increasing effect of light on the partitioning of biomass toward the inflorescence. In both CO2 concentrations, the highest specific leaf area (SLA) was detected under the lowest light intensity, especially in plants grown at e[CO2]. In conclusion, elevated light intensity and CO2 direct the biomass toward inflorescence in chrysanthemum plants.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 434 ◽  
Author(s):  
Haijie Dou ◽  
Genhua Niu ◽  
Mengmeng Gu

Phenolic compounds in basil (Ocimum basilicum) plants grown under a controlled environment are reduced due to the absence of ultraviolet (UV) radiation and low photosynthetic photon flux density (PPFD). To characterize the optimal UV-B radiation dose and PPFD for enhancing the synthesis of phenolic compounds in basil plants without yield reduction, green and purple basil plants grown at two PPFDs, 160 and 224 μmol·m−2·s−1, were treated with five UV-B radiation doses including control, 1 h·d−1 for 2 days, 2 h·d−1 for 2 days, 1 h·d−1 for 5 days, and 2 h·d−1 for 5 days. Supplemental UV-B radiation suppressed plant growth and resulted in reduced plant yield, while high PPFD increased plant yield. Shoot fresh weight in green and purple basil plants was 12%–51% and 6%–44% lower, respectively, after UV-B treatments compared to control. Concentrations of anthocyanin, phenolics, and flavonoids in green basil leaves increased under all UV-B treatments by 9%–18%, 28%–126%, and 80%–169%, respectively, and the increase was greater under low PPFD compared to high PPFD. In purple basil plants, concentrations of phenolics and flavonoids increased after 2 h·d−1 UV-B treatments. Among all treatments, 1 h·d−1 for 2 days UV-B radiation under PPFD of 224 μmol·m−2·s−1 was the optimal condition for green basil production under a controlled environment.


2016 ◽  
Vol 141 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Marc W. van Iersel ◽  
Geoffrey Weaver ◽  
Michael T. Martin ◽  
Rhuanito S. Ferrarezi ◽  
Erico Mattos ◽  
...  

Photosynthetic lighting is one of the main costs of running controlled environment agriculture facilities. To optimize photosynthetic lighting, it is important to understand how plants use the provided light. When photosynthetic pigments absorb photons, the energy from those photons is used to drive the light reactions of photosynthesis, thermally dissipated, or re-emitted by chlorophyll as fluorescence. Chlorophyll fluorescence measurements can be used to determine the quantum yield of photosystem II (ΦPSII) and nonphotochemical quenching (NPQ), which is indicative of the amount of absorbed light energy that is dissipated as heat. Our objective was to develop and test a biofeedback system that allows for the control of photosynthetic photon flux density (PPFD) based on the physiological performance of the plants. To do so, we used a chlorophyll fluorometer to measure ΦPSII, and used these data and PPFD to calculate the electron transport rate (ETR) through PSII. A datalogger then adjusted the duty cycle of the light-emitting diodes (LEDs) based on the ratio of the measured ETR to a predefined target ETR (ETRT). The biofeedback system was able to maintain ETRs of 70 or 100 µmol·m−2·s−1 over 16-hour periods in experiments conducted with lettuce (Lactuca sativa). With an ETRT of 70 µmol·m−2·s−1, ΦPSII was stable throughout the 16 hour and no appreciable changes in PPFD were needed. At an ETRT of 100 µmol·m−2·s−1, ΦPSII gradually decreased from 0.612 to 0.582. To maintain ETR at 100 µmol·m−2·s−1, PPFD had to be increased from 389 to 409 µmol·m−2·s−1, resulting in a gradual decrease of ΦPSII and an increase in NPQ. The ability of the biofeedback system to achieve a range of different ETRs within a single day was tested using lettuce, sweetpotato (Ipomoea batatas), and pothos (Epipremnum aureum). As the ETRT was gradually increased, the PPFD required to achieve that ETR also increased, whereas ΦPSII decreased. Surprisingly, a subsequent decrease in ETRT, and in the PPFD required to achieve that ETR, resulted in only a small increase in ΦPSII. This indicates that ΦPSII was reduced because of photoinhibition. Our results show that the biofeedback system is able to maintain a wide range of ETRs, while it also is capable of distinguishing between NPQ and photoinhibition as causes for decreases in ΦPSII.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tomohiro Jishi ◽  
Ryo Matsuda ◽  
Kazuhiro Fujiwara

The morphology of plants growing under combined blue- and red-light irradiation is affected by the presence or absence of time slots of blue- and red-light mono-irradiation. The purposes of this study were to investigate the morphology and growth of cos lettuce grown under light irradiation combining several durations of blue and red light simultaneously and independent mono-irradiations of blue and red light during the day, and to clarify the effects of the durations of blue-light mono-irradiation and blue-light irradiation. Young cos lettuce seedlings were grown under 24-h blue-light irradiation with a photosynthetic photon flux density (PPFD) of 110μmol m−2 s−1 (B+0R) or under 24-h blue-light irradiation with a PPFD of 100μmol m−2 s−1 supplemented with 8 (B+8R), 16 (B+16R), and 24-h (B+24R) red-light irradiation with PPFDs of 30, 15, and 10μmol m−2 s−1, respectively (Experiment 1). The daily light integral was 9.50mol m−2 in all treatments. In Experiment 1, leaf elongation was promoted as the duration of red-light irradiation decreased and the duration of blue-light mono-irradiation increased. The maximum shoot dry weight was observed under the B+8R treatment. Growth was likely promoted by the expansion of the light-receptive area caused by moderate leaf elongation without tilting. In Experiment 2, young cos lettuce seedlings were grown as for Experiment 1, but blue- and red-light irradiation intensities were reversed (R+0B, R+8B, R+16B, and R+24B). Leaf elongation was promoted by the absence of blue-light irradiation (R+0B). The leaf surface was increasingly flattened, and the shoot dry weight was enhanced, as the duration of blue-light irradiation increased. Thus, cos lettuce leaf morphology may be manipulated by adjusting each duration of blue-light mono-irradiation, red-light mono-irradiation, and blue- and red-light simultaneous irradiation, which can, in turn, promote cos lettuce growth.


HortScience ◽  
2021 ◽  
pp. 1-6
Author(s):  
Tomohiro Jishi ◽  
Ryo Matsuda ◽  
Kazuhiro Fujiwara

Cos lettuce was grown under different spectral photon flux density distribution (SPFD) change patterns with blue- and/or red light-emitting diode (LED) irradiation with a 24-hour cycle. Twelve treatments were designed with a combination of four relative SPFD (RSPFD) change patterns and three photosynthetic photon flux density (PPFD) levels. The RSPFD change patterns were as follows: BR/BR, simultaneous blue- and red-light irradiation (BR) for 24 h; R/BR, red-light monochromatic irradiation (R) for 12 h followed by 12 hours of BR; B/BR, blue-light monochromatic irradiation (B) for 12 hours followed by 12 hours of BR; and B/R, 12 hours of B followed by 12 hours of R. Each RSPFD change pattern was conducted at three daily average photosynthetic photon flux densities (PPFDave) of 50, 100, and 200 µmol·m−2·s−1. The RSPFD change patterns that included B (B/BR and B/R) resulted in elongated leaves. A low ratio of active phytochrome to total phytochrome under B was considered the reason for leaf elongation. Shoot dry weight was significantly greater under the RSPFD change patterns that included B when the PPFDave was 200 µmol·m−2·s−1. The leaf elongation caused by B would have increased the amount of light received and thereby promoted growth. However, excessive leaf elongation caused the plants to fall, and growth was not promoted under the RSPFD change patterns that included B when the PPFDave was 50 µmol·m−2·s−1. Thus, 12-hour B promoted growth under conditions in which leaf elongation leads to increases in the amount of light received.


Sign in / Sign up

Export Citation Format

Share Document