scholarly journals Niche Modeling of Dengue Fever Using Remotely Sensed Environmental Factors and Boosted Regression Trees

2017 ◽  
Vol 9 (4) ◽  
pp. 328 ◽  
Author(s):  
Jeffrey Ashby ◽  
Max Moreno-Madriñán ◽  
Constantin Yiannoutsos ◽  
Austin Stanforth
2017 ◽  
Vol 07 (05) ◽  
pp. 859-875 ◽  
Author(s):  
Brigitte Colin ◽  
Samuel Clifford ◽  
Paul Wu ◽  
Samuel Rathmanner ◽  
Kerrie Mengersen

2018 ◽  
Vol 7 (7) ◽  
pp. 275 ◽  
Author(s):  
Bipin Acharya ◽  
Chunxiang Cao ◽  
Min Xu ◽  
Laxman Khanal ◽  
Shahid Naeem ◽  
...  

Dengue fever is one of the leading public health problems of tropical and subtropical countries across the world. Transmission dynamics of dengue fever is largely affected by meteorological and environmental factors, and its temporal pattern generally peaks in hot-wet periods of the year. Despite this continuously growing problem, the temporal dynamics of dengue fever and associated potential environmental risk factors are not documented in Nepal. The aim of this study was to fill this research gap by utilizing epidemiological and earth observation data in Chitwan district, one of the frequent dengue outbreak areas of Nepal. We used laboratory confirmed monthly dengue cases as a dependent variable and a set of remotely sensed meteorological and environmental variables as explanatory factors to describe their temporal relationship. Descriptive statistics, cross correlation analysis, and the Poisson generalized additive model were used for this purpose. Results revealed that dengue fever is significantly associated with satellite estimated precipitation, normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI) synchronously and with different lag periods. However, the associations were weak and insignificant with immediate daytime land surface temperature (dLST) and nighttime land surface temperature (nLST), but were significant after 4–5 months. Conclusively, the selected Poisson generalized additive model based on the precipitation, dLST, and NDVI explained the largest variation in monthly distribution of dengue fever with minimum Akaike’s Information Criterion (AIC) and maximum R-squared. The best fit model further significantly improved after including delayed effects in the model. The predicted cases were reasonably accurate based on the comparison of 10-fold cross validation and observed cases. The lagged association found in this study could be useful for the development of remote sensing-based early warning forecasts of dengue fever.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Sabelo Nick Dlamini ◽  
Jonas Franke ◽  
Penelope Vounatsou

Many entomological studies have analyzed remotely sensed data to assess the relationship between malaria vector distribution and the associated environmental factors. However, the high cost of remotely sensed products with high spatial resolution has often resulted in analyses being conducted at coarse scales using open-source, archived remotely sensed data. In the present study, spatial prediction of potential breeding sites based on multi-scale remotely sensed information in conjunction with entomological data with special reference to presence or absence of larvae was realized. Selected water bodies were tested for mosquito larvae using the larva scooping method, and the results were compared with data on land cover, rainfall, land surface temperature (LST) and altitude presented with high spatial resolution. To assess which environmental factors best predict larval presence or absence, Decision Tree methodology and logistic regression techniques were applied. Both approaches showed that some environmental predictors can reliably distinguish between the two alternatives (existence and non-existence of larvae). For example, the results suggest that larvae are mainly present in very small water pools related to human activities, such as subsistence farming that were also found to be the major determinant for vector breeding. Rainfall, LST and altitude, on the other hand, were less useful as a basis for mapping the distribution of breeding sites. In conclusion, we found that models linking presence of larvae with high-resolution land use have good predictive ability of identifying potential breeding sites.


2017 ◽  
Vol 3 (1) ◽  
pp. 55-75 ◽  
Author(s):  
Kate Ingenloff

AbstractBackground: Although pelagic seabirds are broadly recognised as indicators of the health of marine systems, numerous gaps exist in knowledge of their at-sea distributions at the species level. These gaps have profound negative impacts on the robustness of marine conservation policies. Correlative modelling techniques have provided some information, but few studies have explored model development for non-breeding pelagic seabirds. Here, I present a first phase in developing robust niche models for highly mobile species as a baseline for further development. Methodology: Using observational data from a 12-year time period, 217 unique model parameterisations across three correlative modelling algorithms (boosted regression trees, Maxent and minimum volume ellipsoids) were tested in a time-averaged approach for their ability to recreate the at-sea distribution of non-breeding Wandering Albatrosses (Diomedea exulans) to provide a baseline for further development. Principle Findings/Results: Overall, minimum volume ellipsoids outperformed both boosted regression trees and Maxent. However, whilst the latter two algorithms generally overfit the data, minimum volume ellipsoids tended to underfit the data. Conclusions: The results of this exercise suggest a necessary evolution in how correlative modelling for highly mobile species such as pelagic seabirds should be approached. These insights are crucial for understanding seabird-environment interactions at macroscales, which can facilitate the ability to address population declines and inform effective marine conservation policy in the wake of rapid global change.


2020 ◽  
Vol 12 (4) ◽  
pp. 1396
Author(s):  
Shufang Wang ◽  
Xiyun Jiao ◽  
Liping Wang ◽  
Aimin Gong ◽  
Honghui Sang ◽  
...  

The simulation and prediction of the land use changes is generally carried out by cellular automata—Markov (CA-Markov) model, and the generation of suitable maps collection is subjective in the simulation process. In this study, the CA-Markov model was improved by the Boosted Regression Trees (BRT) to simulate land use to make the model objectively. The weight of ten driving factors of the land use changes was analyzed in BRT, in order to produce the suitable maps collection. The accuracy of the model was verified. The outcomes represent a match of over 84% between simulated and actual land use in 2015, and the Kappa coefficient was 0.89, which was satisfactory to approve the calibration process. The land use of Hotan Oasis in 2025 and 2035 were predicted by means of this hybrid model. The area of farmland, built-up land and water body in Hotan Oasis showed an increasing trend, while the area of forestland, grassland and unused land continued to show a decreasing trend in 2025 and 2035. The government needs to formulate measures to improve the utilization rate of water resources to meet the growth of farmland, and need to increase ecological environment protection measures to curb the reduction of grass land and forest land for the ecological health.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 228 ◽  
Author(s):  
Hongliang Gu ◽  
Jian Wang ◽  
Lijuan Ma ◽  
Zhiyuan Shang ◽  
Qipeng Zhang

Dendroclimatology and dendroecology have entered mainstream dendrochronology research in subtropical and tropical areas. Our study focused on the use of the chronology series of Masson pine (Pinus massoniana Lamb.), the most widely distributed tree species in the subtropical wet monsoon climate regions in China, to understand the tree growth response to ecological and hydroclimatic variability. The boosted regression trees (BRT) model, a nonlinear machine learning method, was used to explore the complex relationship between tree-ring growth and climate factors on a larger spatial scale. The common pattern of an asymptotic growth response to the climate indicated that the climate-growth relationship may be linear until a certain threshold. Once beyond this threshold, tree growth will be insensitive to some climate factors, after which a nonlinear relationship may occur. Spring and autumn climate factors are important controls of tree growth in most study areas. General circulation model (GCM) projections of future climates suggest that warming climates, especially temperatures in excess of those of the optimum growth threshold (as estimated by BRT), will be particularly threatening to the adaptation of Masson pine.


Sign in / Sign up

Export Citation Format

Share Document