scholarly journals Design of Security Paper with Selective Frequency Reflection Characteristics

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2263
Author(s):  
Sang-Hwa Lee ◽  
Min-Sik Kim ◽  
Jong-Kyu Kim ◽  
Ic-Pyo Hong

In this research, a security paper based on frequency selective structure technologies was designed and fabricated using selective wave reflection characteristics to prevent the offline leakage of confidential documents. Document leakage detection systems using security papers detect security papers using transceiving antenna gates. For the application of such systems, the structure must be designed with excellent reflection performance and stability at the angle of incidence. For this purpose, a loop and patch-type frequency selective structure based on a four-legged element structure was designed to have X-band frequency reflection characteristics. This design was based on optimized variables and was realized through the screen printing method using silver ink on A4 paper. It was verified that both the design and simulation results matched well. To verify its actual applicability, a detector module operable at 10 GHz was manufactured to observe both the security paper detection range in relation to distance with a signal strength of −10 dBm and the detection area in relation to the number of times that the security paper had been folded.

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Sang-Hwa Lee ◽  
Min-Sik Kim ◽  
Jong-Kyu Kim ◽  
Jong-In Lim ◽  
Ic-Pyo Hong

This study designed and fabricated a frequency-selective structure-based security paper for the electromagnetic detection system of a security gate, which aims to prevent leakage of confidential documents. When a functional paper embedded with a frequency-selective pattern that selectively reflects a specific frequency is being leaked out of a security zone, the electromagnetic detection system receives and detects the intensity of the electromagnetic wave reflected from the security paper passing through an antenna gate, which transmits/receives RF signals. A stable detection performance of the security paper can be ensured by improving the incidence angle stability for incident waves and reducing the reflection loss. This study designed a frequency-selective structure with stable frequency reflection properties at the X-band by utilizing a Jerusalem cross structure. The proposed design was realized using the screen printing technique, which could implement a circuit, to print silver ink on a plain paper. To verify the applicability of the frequency-selective structure-based security paper, an RF detection system with a multiple antenna array was constructed and the intensity of the received signals was measured. The measurement was performed for various scenarios, and the result showed that the proposed security paper was well detected.


Author(s):  
Durai Kanchana ◽  
Sankararajan Radha ◽  
Balakrishnapillai Suseela Sreeja ◽  
Esakkimuthu Manikandan

Abstract In this paper, a novel miniaturized and flexible dual band frequency selective surface (FSS) is presented. This FSS provides effective shielding in X-band and Ku- band, with a frequency response of 9.4 and 16.7 GHz, respectively. The proposed FSS provides 924 MHz bandwidth at X-band and 1.34 GHz bandwidth at Ku-band with an insertion loss of 20 dB. Moreover, the proposed design is polarization-independent and it provides stable frequency response at various angles of incidences for both transverse electric and transverse magnetic modes. More significantly, the proposed FSS analyzed the bandstop response of the selective frequency and also is suitable for conformal applications. A prototype of the proposed FSS is fabricated. The measured results and simulated results are good in agreement.


2020 ◽  
pp. 100-103
Author(s):  
Singaram M ◽  
Krishna Kumar E ◽  
Chandraprasad V ◽  
Finney Daniel Shadrach ◽  
Gowthaman Manoharan

A single layer novel compact frequency selective surface which is used in reflector antenna is designed and simulated. The proposed unit cell reflects electromagnetic waves in K and Ka band with maximum reflection occurring at 22.62 GHz and 35.44 GHz respectively. The designed FSS find its application in satellite communication. A crossed dipole structure in center and two-legged structure in corners with square loop in each quadrant makes the FSS unit cell structure. The FSS is designed with oblique incidence for transverse electric and transverse magnetic polarization with return loss 0.3 dB in 22.62 GHz and less than 0.5 dB in 35.44 GHz. The proposed work shows frequency independence against oblique angle of incidence. The simulated result from CST microwave studio is compared with other similar works.


2017 ◽  
Vol 16 ◽  
pp. 3245-3248 ◽  
Author(s):  
Maryam Bashiri ◽  
Changiz Ghobadi ◽  
Javad Nourinia ◽  
Maryam Majidzadeh

Sign in / Sign up

Export Citation Format

Share Document