scholarly journals Opportunistic and Location-Based Collaboration Architecture among Mobile Assets and Fixed Manufacturing Processes

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2703 ◽  
Author(s):  
Dae Wi ◽  
Hyo Kwon ◽  
Jung Park ◽  
Soon Kang ◽  
Jae Lee

Research into integrating the concept of the internet of things (IoT) into smart factories has accelerated, leading to the emergence of various smart factory solutions. Most ideas, however, focus on the automation and integration of processes in factory, rather than organic cooperation among mobile assets (e.g., the workers and manufactured products) and fixed manufacturing equipment (e.g., press molds, computer numerical controls, painting). Additionally, it is difficult to apply smart factory and IoT designs to analog factories, because such a factory would require the integration of mobile assets and smart manufacturing processes. Thus, existing analog factories remain intact and smart factories are newly constructed. To overcome this disparity and to make analog factories compatible with smart technologies and IoT, we propose the opportunistic and location-based collaboration architecture (OLCA) platform, which allows for smart devices to be attached to workers, products, and facilities to enable the collaboration of location and event information in devices. Using this system, we can monitor workers’ positions and production processes in real-time to help prevent dangerous situations and better understand product movement. We evaluate the proposed OLCA platform’s performance while using a simple smart factory scenario, thus confirming its suitability.

2021 ◽  
Author(s):  
Yousef MethkalAbd Algani ◽  
Balaji S ◽  
AlbertRaj A. ◽  
Elangovan G. ◽  
Sathish Kumar P.J. ◽  
...  

Abstract The integration of Internet Protocol and Embedded Systems can enhance the communication platform. This paper describes the emerging smart technologies based on Internet of Things (IOT) and internet protocols along with embedded systems for monitoring and controlling smart devices with the help of Wi-Fi technology and web applications. The internet protocol (IP) address has been assigned to the things to control and operate the devices via remote network that facilitates the interoperability and end-to-end communication among various devices c,onnected over a network. The HTTP POST and HTTP GET command that supports the RESTful service have been used to ensure the transmission and reception of packets between the IOT Gateway and Cloud Database. The emerging smart technologies based on the Internet of Things (IoT) facilitated features like automation, controllability, interconnectivity, reliability which in turn turn paved the way for a wide range of acceptance amongst the masses. The Internet of Things (IoT) has brought in many new emerging technologies into varoius field like our daily lives, industry, agricultural sector, and many more. The world is experiencing the explosive growth with the advent of Internet of Things (IoT) these years. The potential growth of IoT is enoromous which is evidenced by all the human beings in our day to day life.


2021 ◽  
Vol 39 (4) ◽  
pp. 1-33
Author(s):  
Fulvio Corno ◽  
Luigi De Russis ◽  
Alberto Monge Roffarello

In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of trigger-action rules such as “IF the entrance Nest security camera detects a movement, THEN blink the Philips Hue lamp in the kitchen.” Unfortunately, the spread of new supported technologies makes the number of possible combinations between triggers and actions continuously growing, thus motivating the need of assisting users in discovering new rules and functionality, e.g., through recommendation techniques. To this end, we present , a semantic Conversational Search and Recommendation (CSR) system able to suggest pertinent IF-THEN rules that can be easily deployed in different contexts starting from an abstract user’s need. By exploiting a conversational agent, the user can communicate her current personalization intention by specifying a set of functionality at a high level, e.g., to decrease the temperature of a room when she left it. Stemming from this input, implements a semantic recommendation process that takes into account ( a ) the current user’s intention , ( b ) the connected entities owned by the user, and ( c ) the user’s long-term preferences revealed by her profile. If not satisfied with the suggestions, then the user can converse with the system to provide further feedback, i.e., a short-term preference , thus allowing to provide refined recommendations that better align with the original intention. We evaluate by running different offline experiments with simulated users and real-world data. First, we test the recommendation process in different configurations, and we show that recommendation accuracy and similarity with target items increase as the interaction between the algorithm and the user proceeds. Then, we compare with other similar baseline recommender systems. Results are promising and demonstrate the effectiveness of in recommending IF-THEN rules that satisfy the current personalization intention of the user.


Author(s):  
Э.Д. Алисултанова ◽  
Л.К. Хаджиева ◽  
М.З. Исаева

Данная статья посвящена созданию профориентационной (умной) лаборатории, которая призвана сформировать у школьников базовые представления о технологии Интернет вещей (IoT), угрозах кибербезопасности в этой сфере, мотивировать к получению в будущем профильного образования и построению карьеры в области обеспечения безопасности Интернет вещей (IoT) при функционировании умного производства. Обучение школьников в профориентационной лаборатории, построенное на основе применения интерактивных электронных образовательных ресурсов, прежде всего будет позиционировать карьерные возможности будущих специалистов в сфере обеспечения безопасности Интернет вещей (IoT) при функционировании умного производства. В рамках функционирования лаборатории особое внимание обучающихся сконцентрировано на тематиках правовых аспектов обеспечения кибербезопасности, главных тенденциях развития киберугроз в современном глобальном информационном пространстве и мерах, необходимых для их нейтрализации. This article is devoted to the creation of a career-oriented (smart) laboratory, which is designed to formulate in schoolchildren basic ideas about the Internet of Things (IoT) technology, cyber security threats in this area, motivate to receive specialized education in the future and build a career in the field of Internet things (IoT) security) with the functioning of smart manufacturing. The training of schoolchildren in a vocational guidance laboratory, based on the use of interactive electronic educational resources, will primarily position the career opportunities of future specialists in the field of Internet of Things (IoT) security in the operation of smart manufacturing. Within the framework of the functioning of the laboratory, special attention of students is concentrated on the topics of the legal aspects of ensuring cyber security, the main trends in the development of cyber threats in the modern global information space and the measures necessary to neutralize them.


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


2020 ◽  
Author(s):  
Tanweer Alam

<p>The fog computing is the emerging technology to compute, store, control and connecting smart devices with each other using cloud computing. The Internet of Things (IoT) is an architecture of uniquely identified interrelated physical things, these physical things are able to communicate with each other and can transmit and receive information. <a>This research presents a framework of the combination of the Internet of Things (IoT) and Fog computing. The blockchain is also the emerging technology that provides a hyper, distributed, public, authentic ledger to record the transactions. Blockchains technology is a secured technology that can be a boon for the next generation computing. The combination of fog, blockchains, and IoT creates a new opportunity in this area. In this research, the author presents a middleware framework based on the blockchain, fog, and IoT. The framework is implemented and tested. The results are found positive. </a></p>


Author(s):  
Yingying Hu ◽  
Zhongyang Li

Against the background of the growing development of the Internet of Things, this article conducts research on more efficient methods for controlling the interconnection of all things, and proposes that smart devices use the same operating platform, and the human-computer interface presents universal modular controls for manipulation, it can satisfy the requirement that one device controls several different types of controlled device simultaneously. At the same time, the interactive method uses the controlled device to actively submit control content to the control device, and discusses the human-computer interactive control method applicable to the Internet of Everything, and strives to achieve a convenient and easy-to-use human-computer control experience.


Author(s):  
Smita Sanjay Ambarkar ◽  
Rakhi Dattatraya Akhare

This chapter focuses on the comprehensive contents of various applications and principles related to Bluetooth low energy (BLE). The internet of things (IoT) applications like indoor localization, proximity detection problem by using Bluetooth low energy, and enhancing the sales in the commercial market by using BLE have the same database requirement and common implementation idea. The real-world applications are complex and require intensive computation. These computations should take less time, cost, and battery power. The chapter mainly focuses on the usage of BLE beacons for indoor localization. The motive behind the study of BLE devices is that it is supported by mobile smart devices that augment its application exponentially.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2783 ◽  
Author(s):  
Linh-An Phan ◽  
Taehong Kim

Smart home is one of the most promising applications of the Internet of Things. Although there have been studies about this technology in recent years, the adoption rate of smart homes is still low. One of the largest barriers is technological fragmentation within the smart home ecosystem. Currently, there are many protocols used in a connected home, increasing the confusion of consumers when choosing a product for their house. One possible solution for this fragmentation is to make a gateway to handle the diverse protocols as a central hub in the home. However, this solution brings about another issue for manufacturers: compatibility. Because of the various smart devices on the market, supporting all possible devices in one gateway is also an enormous challenge. In this paper, we propose a software architecture for a gateway in a smart home system to solve the compatibility problem. By creating a mechanism to dynamically download and update a device profile from a server, the gateway can easily handle new devices. Moreover, the proposed gateway also supports unified control over heterogeneous networks. We implemented a prototype to prove the feasibility of the proposed gateway architecture and evaluated its performance from the viewpoint of message execution time over heterogeneous networks, as well as the latency for device profile downloads and updates, and the overhead needed for handling unknown commands.


2013 ◽  
Vol 336-338 ◽  
pp. 2512-2515
Author(s):  
Li Min Liu

The internet of things is a foundation for connecting things, sensors, actuators, and other smart technologies, thus enabling person-to-object and object-to-object communications. Its applications are concerned to emergency response, intelligent shopping, smart product management, smart meters, home automation, waste management, sustainable urban environment, continuous care and so on. As automatic identification sensor, RFID is a foundational component for the internet of things. In this paper, internet of things, RFID and technical analysis for IoT and RFID are discussed.


Sign in / Sign up

Export Citation Format

Share Document