scholarly journals Label-Free Rapid Separation and Enrichment of Bone Marrow-Derived Mesenchymal Stem Cells from a Heterogeneous Cell Mixture Using a Dielectrophoresis Device

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3007 ◽  
Author(s):  
Junya Yoshioka ◽  
Yu Ohsugi ◽  
Toru Yoshitomi ◽  
Tomoyuki Yasukawa ◽  
Naoki Sasaki ◽  
...  

Bone marrow-derived mesenchymal stem cells (BMSCs) are an important cell resource for stem cell-based therapy, which are generally isolated and enriched by the density-gradient method based on cell size and density after collection of tissue samples. Since this method has limitations with regards to purity and repeatability, development of alternative label-free methods for BMSC separation is desired. In the present study, rapid label-free separation and enrichment of BMSCs from a heterogeneous cell mixture with bone marrow-derived promyelocytes was successfully achieved using a dielectrophoresis (DEP) device comprising saw-shaped electrodes. Upon application of an electric field, HL-60 cells as models of promyelocytes aggregated and floated between the saw-shaped electrodes, while UE7T-13 cells as models of BMSCs were effectively captured on the tips of the saw-shaped electrodes. After washing out the HL-60 cells from the device selectively, the purity of the UE7T-13 cells was increased from 33% to 83.5% within 5 min. Although further experiments and optimization are required, these results show the potential of the DEP device as a label-free rapid cell isolation system yielding high purity for rare and precious cells such as BMSCs.

2018 ◽  
Vol 10 (7) ◽  
pp. 713-721 ◽  
Author(s):  
Lap Man Lee ◽  
Jenna M. Rosano ◽  
Yi Wang ◽  
George J. Klarmann ◽  
Charles J. Garson ◽  
...  

Isolation of pure populations of mesenchymal stem cells from bone marrow aspirate is a critical need in regenerative medicine such as orthopedic and cartilage reconstruction with important clinical and therapeutic implications.


Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1592
Author(s):  
Sevil Özer ◽  
H. Seda Vatansever ◽  
Feyzan Özdal-Kurt

Bone marrow mesenchymal stem cells (BM-MSCs) are used to repair hypoxic or ischemic tissue. After hypoxic the level of ATP is decreases, cellular functions do not continue and apoptosis or necrosis occur. Apoptosis is a progress of programmed cell death that occurs in normal or pathological conditions. In this study, we were investigated the hypoxic effect on apoptosis in mesenchymal stem cell. Bone marrow-derived stem cells were cultured in hypoxic (1% or 3%) or normoxic conditions 24, 96 well plates for 36 h. Cell viability was shown by MTT assay on 36 h. After fixation of cells with 4% paraformaldehyde, distributions of caspase-3, Bcl-2 and Bax with indirect immunoperoxidase technique, apoptotic cells with TUNEL assay were investigated. All staining results were evaluated using H-score analyses method with ANOVA, statistically. As a result, hypoxic condition was toxic for human mesenchymal stem cells and the number of death cell was higher in that than normoxic condition.


2021 ◽  
Author(s):  
Dhruv Mahendru ◽  
Ashish Jain ◽  
Seema Bansal ◽  
Deepti Malik ◽  
Neha Dhir ◽  
...  

Aim: The aim of the study was to evaluate the neuroprotective effect of bone marrow stem cell secretome in the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. Materials & methods: Secretome prepared from mesenchymal stem cells of 3-month-old rats was injected daily for 7 days between days 7 and 14 after 6-OHDA administration. After 14 days, various neurobehavioral parameters were conducted. These behavioral parameters were further correlated with biochemical and molecular findings. Results & conclusion: Impaired neurobehavioral parameters and increased inflammatory, oxidative stress and apoptotic markers in the 6-OHDA group were significantly modulated by secretome-treated rats. In conclusion, mesenchymal stem cells-derived secretome could be further explored for the management of Parkinson's disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


2013 ◽  
Vol 378 ◽  
pp. 235-238 ◽  
Author(s):  
Jun Qiu ◽  
Zhuo Zhuang ◽  
Bo Huo

The mechanical stimulation from extracellular matrix could regulate physiological behavior of cells through the mechanism of mechanotransduction. Previous researches had shown that apoptosis could be regulated by the size of the cell adhesion area.However, the regulation of cell apoptosis by different adhesion shape with the same area is still unclear. This workfocused on the regulation of apoptosis for bone marrow mesenchymal stem cells (MSCs) by different circularity and area of adhesion geometry. We manufactured micro-pattern surface which was suitable for adhesion of MSCs by the technique of micro-contact printing. Three typesof geometry for individual is land of micro-pattern were designed. We adopted terminal-deoxynucleoitidyl transfer as emediated nick end labeling (TUNEL) method to detectcell apoptosis. This research shows that the adhesion geometry which has smaller area and greater circularity will promote apoptosis of MSCs. This indicates that MSCsmay prefer to live on the surface without any restrict. Ourstudies focused on the significantly important problem about interaction between extracellular matrix and physiological behavior of mesenchymal stem cells.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Abdel Kader A. Zaki ◽  
Tariq I. Almundarij ◽  
Faten A. M. Abo-Aziza

AbstractClinical applications of cell therapy and tissue regeneration under different conditions need a multiplicity of adult stem cell sources. Up to date, little is available on the comparative isolation, characterization, proliferation, rapid amplification, and osteogenic/adipogenic differentiation of rat mesenchymal stem cells (MSCs) isolated from living bulge cells of the hair follicle (HF) and bone marrow (BM) from the same animal. This work hopes to use HF-MSCs as an additional adult stem cell source for research and application. After reaching 80% confluence, the cell counting, viability %, and yields of HF-MSCs and BM-MSCs were nearly similar. The viability % was 91.41 ± 2.98 and 93.11 ± 3.06 while the cells yield of initial seeding was 33.15 ± 2.76 and 34.22 ± 3.99 and of second passage was 28.76 ± 1.01 and 29.56 ± 3.11 for HF-MSCs and BM-MSCs respectively. Clusters of differentiation (CDs) analysis revealed that HF-MSCs were positively expressed CD34, CD73 and CD200 and negatively expressed CD45. BM-MSCs were positively expressed CD73 and CD200 and negatively expressed of CD34 and CD45. The proliferation of HF-MSCs and BM-MSCs was determined by means of incorporation of Brd-U, population doubling time (PDT) assays and the quantity of formazan release. The percentage of Brd-U positive cells and PDT were relatively similar in both types of cells. The proliferation, as expressed by the quantity of formazan assay in confluent cells, revealed that the quantity of release by BM-MSCs was slightly higher than HF-MSCs. Adipogenic differentiated BM-MSCs showed moderate accumulation of oil red-O stained lipid droplets when compared to that of HF-MSCs which exhibited high stain. The total lipid concentration was significantly higher in adipogenic differentiated HF-MSCs than BM-MSCs (P < 0.05). It was found that activity of bone alkaline phosphatase and calcium concentration were significantly higher (P < 0.01 and P < 0.05 respectively) in osteogenic differentiated BM-MSCs than that of HF-MSCs. The present findings demonstrate that the HF-MSCs are very similar in most tested characteristics to BM-MSCs with the exception of differentiation. Additionally; no issues have been reported during the collection of HF-MSCs. Therefore, the HF may represent a suitable and accessible source for adult stem cells and can be considered an ideal cell source for adipogenesis research.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Da Yeon Lee ◽  
Sung Eun Lee ◽  
Do Hyeon Kwon ◽  
Saraswathy Nithiyanandam ◽  
Mi Ha Lee ◽  
...  

Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been studied for their application to manage various neurological diseases, owing to their anti-inflammatory, immunomodulatory, paracrine, and antiapoptotic ability, as well as their homing capacity to specific regions of brain injury. Among mesenchymal stem cells, such as BM-MSCs, adipose-derived MSCs, and umbilical cord MSCs, BM-MSCs have many merits as cell therapeutic agents based on their widespread availability and relatively easy attainability and in vitro handling. For stem cell-based therapy with BM-MSCs, it is essential to perform ex vivo expansion as low numbers of MSCs are obtained in bone marrow aspirates. Depending on timing, before hBM-MSC transplantation into patients, after detaching them from the culture dish, cell viability, deformability, cell size, and membrane fluidity are decreased, whereas reactive oxygen species generation, lipid peroxidation, and cytosolic vacuoles are increased. Thus, the quality and freshness of hBM-MSCs decrease over time after detachment from the culture dish. Especially, for neurological disease cell therapy, the deformability of BM-MSCs is particularly important in the brain for the development of microvessels. As studies on the traditional characteristics of hBM-MSCs before transplantation into the brain are very limited, omics and machine learning approaches are needed to evaluate cell conditions with indepth and comprehensive analyses. Here, we provide an overview of hBM-MSCs, the application of these cells to various neurological diseases, and improvements in their quality and freshness based on integrated omics after detachment from the culture dish for successful cell therapy.


2018 ◽  
Vol 234 (2) ◽  
pp. 1326-1335 ◽  
Author(s):  
Saeid Bagheri-Mohammadi ◽  
Mohammad Karimian ◽  
Behrang Alani ◽  
Javad Verdi ◽  
Rana Moradian Tehrani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document