scholarly journals Indoor Smartphone Localization Based on LOS and NLOS Identification

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3987 ◽  
Author(s):  
Hyeon Jo ◽  
Seungku Kim

Accurate localization technology is essential for providing location-based services. Global positioning system (GPS) is a typical localization technology that has been used in various fields. However, various indoor localization techniques are required because GPS signals cannot be received in indoor environments. Typical indoor localization methods use the time of arrival, angle of arrival, or the strength of the wireless communication signal to determine the location. In this paper, we propose an indoor localization scheme using signal strength that can be easily implemented in a smartphone. The proposed algorithm uses a trilateration method to estimate the position of the smartphone. The accuracy of the trilateration method depends on the distance estimation error. We first determine whether the propagation path is line-of-sight (LOS) or non-line-of-sight (NLOS), and distance estimation is performed accordingly. This LOS and NLOS identification method decreases the distance estimation error. The proposed algorithm is implemented as a smartphone application. The experimental results show that distance estimation error is significantly reduced, resulting in accurate localization.

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3290 ◽  
Author(s):  
Nam Tuan Le ◽  
Yeong Min Jang

Localization has become an important aspect in a wide range of mobile services with the integration of the Internet of things and service on demand. Numerous mechanisms have been proposed for localization, most of which are based on the estimation of distances. Depending on the channel modeling, each mechanism has its advantages and limitations on deployment, exhibiting different performances in terms of error rates and implementation. With the development of technology, these limitations are rapidly overcome with hybrid systems and enhancement schemes. The successful approach depends on the achievement of a low error rate and its controllability by the integration of deployed products. In this study, we propose and analyze a new distance estimation technique employing photography and image sensor communications, also named optical camera communications (OCC). It represents one of the most important steps in the implemented trilateration localization scheme with real architectures and conditions of deployment which is the second our contribution for this article. With the advantages of the image sensor hardware integration in smart mobile devices, this technology has great potential in localization-based optical wireless communication


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2692 ◽  
Author(s):  
Yujin Chen ◽  
Ruizhi Chen ◽  
Mengyun Liu ◽  
Aoran Xiao ◽  
Dewen Wu ◽  
...  

Indoor localization is one of the fundamentals of location-based services (LBS) such as seamless indoor and outdoor navigation, location-based precision marketing, spatial cognition of robotics, etc. Visual features take up a dominant part of the information that helps human and robotics understand the environment, and many visual localization systems have been proposed. However, the problem of indoor visual localization has not been well settled due to the tough trade-off of accuracy and cost. To better address this problem, a localization method based on image retrieval is proposed in this paper, which mainly consists of two parts. The first one is CNN-based image retrieval phase, CNN features extracted by pre-trained deep convolutional neural networks (DCNNs) from images are utilized to compare the similarity, and the output of this part are the matched images of the target image. The second one is pose estimation phase that computes accurate localization result. Owing to the robust CNN feature extractor, our scheme is applicable to complex indoor environments and easily transplanted to outdoor environments. The pose estimation scheme was inspired by monocular visual odometer, therefore, only RGB images and poses of reference images are needed for accurate image geo-localization. Furthermore, our method attempts to use lightweight datum to present the scene. To evaluate the performance, experiments are conducted, and the result demonstrates that our scheme can efficiently result in high location accuracy as well as orientation estimation. Currently the positioning accuracy and usability enhanced compared with similar solutions. Furthermore, our idea has a good application foreground, because the algorithms of data acquisition and pose estimation are compatible with the current state of data expansion.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 334 ◽  
Author(s):  
Stefania Monica ◽  
Federico Bergenti

The interest in indoor localization has been increasing in the last few years because of the numerous important applications related to the pervasive diffusion of mobile smart devices that could benefit from localization. Various wireless technologies are in use to perform indoor localization, and, among them, WiFi and UWB technologies are appreciated when robust and accurate localization is required. The major advantage of WiFi technology is that it is ubiquitous, and therefore it can be used to support localization without the introduction of a specific infrastructure. The major drawback of WiFi technology is that it does not often ensure sufficient accuracy. On the contrary, indoor localization based on UWB technology guarantees higher accuracy with increased robustness, but it requires the use of UWB-enabled devices and the deployment of specific infrastructures made of UWB beacons. Experimental results on the synergic use of WiFi and UWB technologies for localization are presented in this paper to show that hybrid approaches can be used to effectively to increase the accuracy of WiFi-based localization. Actually, presented experimental results show that the use of a small number of UWB beacons together with an ordinary WiFi infrastructure is sufficient to significantly increase the accuracy of localization and to make WiFi-based localization adequate to implement relevant location-based services and applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zahid Farid ◽  
Rosdiadee Nordin ◽  
Mahamod Ismail ◽  
Nor Fadzilah Abdullah

In indoor environments, WiFi (RSS) based localization is sensitive to various indoor fading effects and noise during transmission, which are the main causes of localization errors that affect its accuracy. Keeping in view those fading effects, positioning systems based on a single technology are ineffective in performing accurate localization. For this reason, the trend is toward the use of hybrid positioning systems (combination of two or more wireless technologies) in indoor/outdoor localization scenarios for getting better position accuracy. This paper presents a hybrid technique to implement indoor localization that adopts fingerprinting approaches in both WiFi and Wireless Sensor Networks (WSNs). This model exploits machine learning, in particular Artificial Natural Network (ANN) techniques, for position calculation. The experimental results show that the proposed hybrid system improved the accuracy, reducing the average distance error to 1.05 m by using ANN. Applying Genetic Algorithm (GA) based optimization technique did not incur any further improvement to the accuracy. Compared to the performance of GA optimization, the nonoptimized ANN performed better in terms of accuracy, precision, stability, and computational time. The above results show that the proposed hybrid technique is promising for achieving better accuracy in real-world positioning applications.


2010 ◽  
pp. 9-15
Author(s):  
Andreas Fink ◽  
Helmut Beikirch ◽  
Matthias Voss

Distance estimation by the evaluation of RSSI measurements is a simple and well-known technique to predict the position of an unknown node. Therefore the infrastructure does not have to be extended by expensive hardware for synchronization or direction approximation. However, with the localization based on RSSI measurements common and proven systems can be used for the infrastructure. For indoor environments the distance-pending path loss is affected by strong variations, especially appearing as frequency specific signal dropouts. A diversity concept with redundant data transmission in different frequency bands can reduce the dropout probability. If also space diversity and plausibility filtering are used, the Location Estimation Error can be reduced significantly. The investigations show that a good performance for precision and availability can also be reached with low infrastructural costs.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5415 ◽  
Author(s):  
Shashi Shah ◽  
Tanee Demeechai

Growth in the applications of wireless devices and the need for seamless solutions to location-based services has motivated extensive research efforts to address wireless indoor localization networks. Existing works provide range-based localization using ultra-wideband technology, focusing on reducing the inaccuracy in range estimation due to clock offsets between different devices. This is generally achieved via signal message exchange between devices, which can lead to network congestion when the number of users is large. To address the problem of range estimation with limited signal messages, this paper proposes multiple simultaneous ranging methods based on a property of time difference of reception of two packets transmitted from different sources in impulse-radio ultra-wideband (IR-UWB) networks. The proposed method maintains similar robustness to the clock offsets while significantly reducing the air time occupancy when compared with the best existing ranging methods. Experimental evaluation of ranging in a line-of-sight environment shows that the proposed method enables accurate ranging with minimal air time occupancy.


2019 ◽  
Vol 11 (5) ◽  
pp. 504 ◽  
Author(s):  
Yue Yu ◽  
Ruizhi Chen ◽  
Liang Chen ◽  
Guangyi Guo ◽  
Feng Ye ◽  
...  

More and more applications of location-based services lead to the development of indoor positioning technology. Wi-Fi-based indoor localization has been attractive due to its extensive distribution and low cost properties. IEEE 802.11-2016 now includes a Wi-Fi Fine Time Measurement (FTM) protocol which provides a more robust approach for Wi-Fi ranging between the mobile terminal and Wi-Fi access point (AP). To improve the positioning accuracy, in this paper, we propose a robust dead reckoning algorithm combining the results of Wi-Fi FTM and multiple sensors (DRWMs). A real-time Wi-Fi ranging model is built which can effectively reduce the Wi-Fi ranging errors, and then a multisensor multi-pattern-based dead reckoning is presented. In addition, the Unscented Kalman filter (UKF) is applied to fuse the results of Wi-Fi ranging model and multiple sensors. The experiment results show that the proposed DRWMs algorithm can achieve accurate localization performance in line-of-sight/non-line-of-sight (LOS)/(NLOS) mixed indoor environment. Compared with the traditional Wi-Fi positioning method and the traditional dead reckoning method, the proposed algorithm is more stable and has better real-time performance for indoor positioning.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2000
Author(s):  
Marius Laska ◽  
Jörg Blankenbach

Location-based services (LBS) have gained increasing importance in our everyday lives and serve as the foundation for many smartphone applications. Whereas Global Navigation Satellite Systems (GNSS) enable reliable position estimation outdoors, there does not exist any comparable gold standard for indoor localization yet. Wireless local area network (WLAN) fingerprinting is still a promising and widely adopted approach to indoor localization, since it does not rely on preinstalled hardware but uses the existing WLAN infrastructure typically present in buildings. The accuracy of the method is, however, limited due to unstable fingerprints, etc. Deep learning has recently gained attention in the field of indoor localization and is also utilized to increase the performance of fingerprinting-based approaches. Current solutions can be grouped into models that either estimate the exact position of the user (regression) or classify the area (pre-segmented floor plan) or a reference location. We propose a model, DeepLocBox (DLB), that offers reliable area localization in multi-building/multi-floor environments without the prerequisite of a pre-segmented floor plan. Instead, the model predicts a bounding box that contains the user’s position while minimizing the required prediction space (size of the box). We compare the performance of DLB with the standard approach of neural network-based position estimation and demonstrate that DLB achieves a gain in success probability by 9.48% on a self-collected dataset at RWTH Aachen University, Germany; by 5.48% for a dataset provided by Tampere University of Technology (TUT), Finland; and by 3.71% for the UJIIndoorLoc dataset collected at Jaume I University (UJI) campus, Spain.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


Sign in / Sign up

Export Citation Format

Share Document