scholarly journals Integrity Monitoring of PPP-RTK Positioning; Part I: GNSS-Based IM Procedure

2021 ◽  
Vol 14 (1) ◽  
pp. 44
Author(s):  
Kan Wang ◽  
Ahmed El-Mowafy ◽  
Weijin Qin ◽  
Xuhai Yang

Nowadays, integrity monitoring (IM) is required for diverse safety-related applications using intelligent transport systems (ITS). To ensure high availability for road transport users for in-lane positioning, a sub-meter horizontal protection level (HPL) is expected, which normally requires a much higher horizontal positioning precision of, e.g., a few centimeters. Precise point positioning-real-time kinematic (PPP-RTK) is a positioning method that could achieve high accuracy without long convergence time and strong dependency on nearby infrastructure. As the first part of a series of papers, this contribution proposes an IM strategy for multi-constellation PPP-RTK positioning based on global navigation satellite system (GNSS) signals. It analytically studies the form of the variance-covariance (V-C) matrix of ionosphere interpolation errors for both accuracy and integrity purposes, which considers the processing noise, the ionosphere activities and the network scale. In addition, this contribution analyzes the impacts of diverse factors on the size and convergence of the HPLs, including the user multipath environment, the ionosphere activity, the network scale and the horizontal probability of misleading information (PMI). It is found that the user multipath environment generally has the largest influence on the size of the converged HPLs, while the ionosphere interpolation and the multipath environments have joint impacts on the convergence of the HPL. Making use of 1 Hz data of Global Positioning System (GPS)/Galileo/Beidou Navigation Satellite System (BDS) signals on L1 and L5 frequencies, for small- to mid-scaled networks, under nominal multipath environments and for a horizontal PMI down to , the ambiguity-float HPLs can converge to 1.5 m within or around 50 epochs under quiet to medium ionosphere activities. Under nominal multipath conditions for small- to mid-scaled networks, with the partial ambiguity resolution enabled, the HPLs can converge to 0.3 m within 10 epochs even under active ionosphere activities.

2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2753 ◽  
Author(s):  
Jie Hu ◽  
Zhongli Wu ◽  
Xiongzhen Qin ◽  
Huangzheng Geng ◽  
Zhangbin Gao

Telematics box (T-Box) chip-level Global Navigation Satellite System (GNSS) receiver modules usually suffer from GNSS information failure or noise in urban environments. In order to resolve this issue, this paper presents a real-time positioning method for Extended Kalman Filter (EKF) and Back Propagation Neural Network (BPNN) algorithms based on Antilock Brake System (ABS) sensor and GNSS information. Experiments were performed using an assembly in the vehicle with a T-Box. The T-Box firstly use automotive kinematical Pre-EKF to fuse the four wheel speed, yaw rate and steering wheel angle data from the ABS sensor to obtain a more accurate vehicle speed and heading angle velocity. In order to reduce the noise of the GNSS information, After-EKF fusion vehicle speed, heading angle velocity and GNSS data were used and low-noise positioning data were obtained. The heading angle speed error is extracted as target and part of low-noise positioning data were used as input for training a BPNN model. When the positioning is invalid, the well-trained BPNN corrected heading angle velocity output and vehicle speed add the synthesized relative displacement to the previous absolute position to realize a new position. With the data of high-precision real-time kinematic differential positioning equipment as the reference, the use of the dual EKF can reduce the noise range of GNSS information and concentrate good-positioning signals of the road within 5 m (i.e. the positioning status is valid). When the GNSS information was shielded (making the positioning status invalid), and the previous data was regarded as a training sample, it is found that the vehicle achieved 15 minutes position without GNSS information on the recycling line. The results indicated this new position method can reduce the vehicle positioning noise when GNSS information is valid and determine the position during long periods of invalid GNSS information.


2019 ◽  
Author(s):  
Fauzi Janu Amarrohman ◽  
L M Sabri ◽  
Moehammad Awaluddin ◽  
Bambang Darmo Yuwono

Positioning on the surface of the earth using the triangulation method can be done in two ways, namely terrestrial method for example by measuring the angle and distance using the total station tool and extraterrestrial methods for example by using satellite-based positioning technology. Extraterrestrial positioning method using the global navigation satellite system combined with terrestrial methods by measuring angles and distances using the total station tool is one alternative to positioning well. In this study position determination will only be calculated using two intermediate calculation plane, on the ellipsoid projection and in the plane projection. Of course, in a process of measuring position for the same point but using different methods it will produce different levels of accuracy. From the results of the comparison in determining the definitive coordinate value generated by the count on the ellipsoid projection with the Gauss-Helmert method, the definitive value that is closer to the reference value measured by static measurements methods rather than definitive coordinates produced through calculations in the plane projection.


2020 ◽  
Vol 39 (13) ◽  
pp. 1503-1524
Author(s):  
Guillermo Duenas Arana ◽  
Osama Abdul Hafez ◽  
Mathieu Joerger ◽  
Matthew Spenko

The problem of quantifying robot localization safety in the presence of undetected sensor faults is critical when preparing for future applications where robots may interact with humans in life-critical situations; however, the topic is only sparsely addressed in the robotics literature. In response, this work leverages prior work in aviation integrity monitoring to tackle the more challenging case of evaluating localization safety in Global Navigation Satellite System (GNSS)-denied environments. Localization integrity risk is the probability that a robot’s pose estimate lies outside pre-defined acceptable limits while no alarm is triggered. In this article, the integrity risk (i.e., localization safety) is rigorously upper bounded by accounting for both nominal sensor noise and other non-nominal sensor faults. An extended Kalman filter is employed to estimate the robot state, and a sequence of innovations is used for fault detection. The novelty of the work includes (1) the use of a time window to limit the number of monitored fault hypotheses while still guaranteeing safety with respect to previously occurring faults and (2) a new method to account for faults in the data association process.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 198 ◽  
Author(s):  
Mudan Su ◽  
Xing Su ◽  
Qile Zhao ◽  
Jingnan Liu

Currently, the Global Navigation Satellite System (GNSS) mainly uses the satellites in Medium Earth Orbit (MEO) to provide position, navigation, and timing (PNT) service. The weak navigation signals limit its usage in deep attenuation environments, and make it easy to interference and counterfeit by jammers or spoofers. Moreover, being far away to the Earth results in relatively slow motion of the satellites in the sky and geometric change, making long time needed for achieved centimeter positioning accuracy. By using the satellites in Lower Earth Orbit (LEO) as the navigation satellites, these disadvantages can be addressed. In this contribution, the advantages of navigation from LEO constellation has been investigated and analyzed theoretically. The space segment of global Chinese BeiDou Navigation Satellite System consisting of three GEO, three IGSO, and 24 MEO satellites has been simulated with a LEO constellation with 120 satellites in 10 orbit planes with inclination of 55 degrees in a nearly circular orbit (eccentricity about 0.000001) at an approximate altitude of 975 km. With simulated data, the performance of LEO constellation to augment the global Chinese BeiDou Navigation Satellite System (BeiDou-3) has been assessed, as one of the example to show the promising of using LEO as navigation system. The results demonstrate that the satellite visibility and position dilution of precision have been significantly improved, particularly in mid-latitude region of Asia-Pacific region, once the LEO data were combined with BeiDou-3 for navigation. Most importantly, the convergence time for Precise Point Positioning (PPP) can be shorted from about 30 min to 1 min, which is essential and promising for real-time PPP application. Considering there are a plenty of commercial LEO communication constellation with hundreds or thousands of satellites, navigation from LEO will be an economic and promising way to change the heavily relay on GNSS systems.


2009 ◽  
Vol 63 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Tomislav Radišić ◽  
Doris Novak ◽  
Tino Bucak

Receiver Autonomous Integrity Monitoring (RAIM) is a method, used by an aircraft's receiver, for detecting and isolating faulty satellites of the Global Navigation Satellite System (GNSS). In order for a receiver to be able to detect and isolate a faulty satellite using a RAIM algorithm, a couple of conditions must be met: a minimum number of satellites, and an adequate satellite geometry. Due to the highly predictable orbits of the GPS satellites, a RAIM availability prediction can be done easily. A number of RAIM methods exist; however, none of them takes into account the precise terrain masking of the satellites for the specific location. They consider a uniform fixed mask angle over the whole horizon. This paper will introduce the variable mask RAIM algorithm in order to show to what extent the terrain can affect the RAIM availability and how much it differs from the conventional algorithms.


Author(s):  
Yanlei Gu ◽  
Li-Ta Hsu ◽  
Shunsuke Kamijo

Accurate vehicle localization technologies are significant for current onboard navigation systems and future autonomous vehicles. More specifically, positioning accuracy is expected at the submeter level. This paper presents an accurate vehicle self-localization system and evaluates the proposed system in different classes of urban environments. The developed system adopts an innovative global navigation satellite system (GNSS) positioning method as the key technique. The GNSS positioning method can improve the positioning error by reducing the effects of multipath interference and non-line-of-sight errors with the aid of a three-dimensional map. To improve positioning accuracy further, the vehicle localization system integrates the GNSS positioning technique with inertial sensors and vision sensors by considering the characteristics of each sensor. The inertial sensors represent vehicle movement with heading direction and vehicle speed. The vision sensor is used to recognize the position change relative to lane markings on the road surface. Those techniques and sensors collaborate to provide an accurate position in the global coordinate system. To verify the effectiveness and stability of the proposed system, a series of tests was conducted in one of the most challenging urban cities, Tokyo. The experiment results demonstrate that the proposed system can achieve submeter accuracy for the positioning error mean and has a 90% correct lane rate in the localization.


2019 ◽  
Vol 72 (06) ◽  
pp. 1533-1549
Author(s):  
X.M. Huang ◽  
X. Zhao ◽  
J.Y. Li ◽  
X.W. Zhu ◽  
G. Ou

An algorithm for Global Navigation Satellite System satellite atomic clock integrity monitoring based on an extended measurement model is proposed. A detection statistic achieved by parity transformation is used to detect clock anomalies, and the concept of the optimal accumulation number, with a method to find it, is provided. Numerical simulations are adopted to verify the validity of detecting two typical anomalies.


2020 ◽  
Vol 12 (20) ◽  
pp. 3343
Author(s):  
Hongyang Ma ◽  
Qile Zhao ◽  
Sandra Verhagen ◽  
Dimitrios Psychas ◽  
Xianglin Liu

The benefits of an increased number of global navigation satellite systems (GNSS) in space have been confirmed for the robustness and convergence time of standard precise point positioning (PPP) solutions, as well as improved accuracy when (most of) the ambiguities are fixed. Yet, it is still worthwhile to investigate fast and high-precision GNSS parameter estimation to meet user needs. This contribution focuses on integer ambiguity resolution-enabled Precise Point Positioning (PPP-RTK) in the use of the observations from four global navigation systems, i.e., GPS (Global Positioning System), Galileo (European Global Navigation Satellite System), BDS (Chinese BeiDou Navigation Satellite System), and GLONASS (Global’naya Navigatsionnaya Sputnikova Sistema). An undifferenced and uncombined PPP-RTK model is implemented for which the satellite clock and phase bias corrections are computed from the data processing of a group of stations in a network and then provided to users to help them achieve integer ambiguity resolution on a single receiver by calibrating the satellite phase biases. The dataset is recorded in a local area of the GNSS network of the Netherlands, in which 12 stations are regarded as the reference to generate the corresponding corrections and 21 as the users to assess the performance of the multi-GNSS PPP-RTK in both kinematic and static positioning mode. The results show that the root-mean-square (RMS) errors of the ambiguity float solutions can achieve the same accuracy level of the ambiguity fixed solutions after convergence. The combined GNSS cases, on the contrary, reduce the horizontal RMS of GPS alone with 2 cm level to GPS + Galileo/GPS + Galileo + BDS/GPS + Galileo + BDS + GLONASS with 1 cm level. The convergence time benefits from both multi-GNSS and fixing ambiguities, and the performances of the ambiguity fixed solution are comparable to those of the multi-GNSS ambiguity float solutions. For instance, the convergence time of GPS alone ambiguity fixed solutions to achieve 10 cm three-dimensional (3D) positioning accuracy is 39.5 min, while it is 37 min for GPS + Galileo ambiguity float solutions; moreover, with the same criterion, the convergence time of GE ambiguity fixed solutions is 19 min, which is better than GPS + Galileo + BDS + GLONASS ambiguity float solutions with 28.5 min. The experiments indicate that GPS alone occasionally suffers from a wrong fixing problem; however, this problem does not exist in the combined systems. Finally, integer ambiguity resolution is still necessary for multi-GNSS in the case of fast achieving very-high-accuracy positioning, e.g., sub-centimeter level.


Sign in / Sign up

Export Citation Format

Share Document