scholarly journals Thermal Imaging Reliability for Estimating Grain Yield and Carbon Isotope Discrimination in Wheat Genotypes: Importance of the Environmental Conditions

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2676 ◽  
Author(s):  
Sebastián Romero-Bravo ◽  
Ana María Méndez-Espinoza ◽  
Miguel Garriga ◽  
Félix Estrada ◽  
Alejandro Escobar ◽  
...  

Canopy temperature (Tc) by thermal imaging is a useful tool to study plant water status and estimate other crop traits. This work seeks to estimate grain yield (GY) and carbon discrimination (Δ13C) from stress degree day (SDD = Tc − air temperature, Ta), considering the effect of a number of environmental variables such as the averages of the maximum vapor pressure deficit (VPDmax) and the ambient temperature (Tmax), and the soil water content (SWC). For this, a set of 384 and a subset of 16 genotypes of spring bread wheat were evaluated in two Mediterranean-climate sites under water stress (WS) and full irrigation (FI) conditions, in 2011 and 2012, and 2014 and 2015, respectively. The relationship between the GY of the 384 wheat genotypes and SDD was negative and highly significant in 2011 (r2 = 0.52 to 0.68), but not significant in 2012 (r2 = 0.03 to 0.12). Under WS, the average GY, Δ13C, and SDD of wheat genotypes growing in ten environments were more associated with changes in VPDmax and Tmax than with the SWC. Therefore, the amount of water available to the plant is not enough information to assume that a particular genotype is experiencing a stress condition.

2017 ◽  
Vol 8 (2) ◽  
pp. 520-524
Author(s):  
S. Gutiérrez ◽  
M. P. Diago ◽  
J. Fernández-Novales ◽  
J. Tardaguila

The goal of this work was the assessment of commercial vineyard water status using on-the-go thermal imaging. On-the-go thermal imaging acquisition was conducted with a thermal camera operating at 1.20 m distance from the canopy, mounted on a quad moving at 5 km/h. Canopy temperature, cross water stress index (CWSI) and stomatal conductance index (Ig) were strongly and significantly correlated to stem water potential (Ψstem) in east and west side of the canopy. For CWSI, the values of the coefficient of determination (R2) were 0.88*** and 0.73*** for east and west sides, respectively. As regards the index Ig, its relationships with Ψstem showed R2=0.89*** and R2=0.77*** for east and west sides, respectively. These results are promising and evidence the potential of on-the-go thermal imaging to become a new tool to evaluate the vineyard water status.


Author(s):  
Elfadil Mohamed Elbashier ◽  
Elfadil Mohammed Eltayeb Elbashier ◽  
Siddig Esa Idris2 ◽  
Wuletaw Tadesse ◽  
Izzat S.A. Tahir ◽  
...  

PurposeThe purpose of this paper was to study the genetic variability, heritability, heat tolerance indices and phenotypic and genotypic correlation studies for traits of 250 elite International Center for Agricultural Research in the Dry Areas (ICARDA) bread wheat genotypes under high temperature in Wad Medani, Center in Sudan.Design/methodology/approachBread wheat is an important food on a global level and is used in the form of different products. High temperature associated with climate change is considered to be a detrimental stress in the future on world wheat production. A total of 10,250 bread wheat genotypes selected from different advanced yield trials introduction from ICARDA and three checks including were grown in two sowing dates (SODs) (1st and 2nd) 1st SOD heat stress and 2nd SOD non-stress at the Gezira Research Farm, of the Agricultural Research Corporation, Wad Medani, Sudan.FindingsAn alpha lattice design with two replications was used to assess the presence of phenotypic and genotypic variations of different traits, indices for heat stress and heat tolerance for 20 top genotypes and phenotypic and genotypic correlations. Analysis of variance revealed significant differences among genotypes for all the characters. A wide range, 944-4,016 kg/ha in the first SOD and 1,192-5,120 kg/ha in the second SOD, was found in grain yield. The average yield on the first SOD is less than that of the secondnd SOD by 717.7 kg/ha, as the maximum and minimum temperatures were reduced by 3ºC each in the second SOD when compared to the first SOD of the critical stage of crop growth shown.Research limitations/implicationsSimilar wide ranges were found in all morpho-physiological traits studied. High heritability in a broad sense was estimated for days to heading and maturity. Moderate heritability estimates found for grain yield ranged from 44 to 63.6 per cent, biomass ranged from 37.8 to 49.1 per cent and canopy temperature (CT) after heading ranged from 44.2 to 48 per cent for the first and secondnd SODs. The top 20 genotypes are better than the better check in the two sowing dates and seven genotypes (248, 139, 143, 27, 67, 192 and 152) were produced high grain yield under both 1st SOD and 2nd SOD.Practical implicationsThe same genotypes in addition to Imam (check) showed smaller tolerance (TOL) values, indicating that these genotypes had a smaller yield reduction under heat-stressed conditions and that they showed a higher heat stress susceptibility index (SSI). A smaller TOL and a higher SSI are favored. Both phenotypic and genotypic correlations of grain yield were positively and significantly correlated with biomass, harvest index, number of spikes/m2, number of seeds/spike and days to heading and maturity in both SODs and negatively and significantly correlated with canopy temperature before and after heading in both SODs.Originality/valueGenetic variations, heritability, heat tolerance indices and correlation studies for traits of bread wheat genotypes under high temperature


1986 ◽  
Vol 37 (3) ◽  
pp. 219 ◽  
Author(s):  
WK Anderson

Eight spring bread wheat cultivars (Triticum aestivum L.), differing widely in their nominal yield component characteristics, were tested under rain-fed conditions for three years at sowing densities ranging from 50 to 800 seeds m-2. The objectives of the experiments were to estimate the relationship between grain yield and particular yield components, the expression of plant type (yield components) in relation to plant density, and the plant population x cultivar interaction for grain yield over a range of seasons in a given environment. The 'optimum' plant population (at maximum grain yield) varied over 30-220 plants m-2, depending on season and cultivar. In general, variation in the 'optimum' population was greater between seasons for a given cultivar than between cultivars within seasons. The relationship between grain yield and yield components was examined at the 'optimum' population rather than at an arbitrary population at which grain yield may have been suboptimal for some cultivars or seasons. Grain yields at the optimum populations for the various cultivar x season combinations were positively related to culms m-2, spikes m-2 and seeds m-2. They were not clearly related to culm mortality (%). When averaged across seasons, cultivar grain yields were positively related to harvest index, but the general relationship was not so clear when seasons and cultivars were examined individually. Spike size (seeds spike-I or spike weight) and seed size were also not clearly related to grain yield at the 'optimum' population, and it was thus postulated that the production and survival of large numbers of culms, which in turn led to large numbers of seeds per unit area, were the source of large grain yields. Some interactions were found between yield components and plant population for some cultivars that could have implications for plant breeders selecting at low plant densities. The implications for crop ideotypes of the individual plant characters at the 'optimum' population are also discussed. Interactions between cultivars and plant populations implied that some cultivars required different populations to achieve maximum yields in some seasons. There was a tendency for larger yields to be achieved from cultivar x season combinations where the optimum population was larger, which suggested that commercial seed rates should be re-examined when changes to plant types or yield levels are made.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 249
Author(s):  
Gustavo Haddad Souza Vieira ◽  
Rhuanito Soranz Ferrarezi

The direct examination of plant canopy temperature can assist in optimizing citrus irrigation management in greenhouses. This study aimed to develop a method to measure canopy temperature using thermal imaging in one-year-old citrus plants in a greenhouse to identify plants with water stress and verify its potential to be used as a tool to assess citrus water status. The experiment was conducted for 48 days (27 November 2019 to 13 January 2020). We evaluated the influence of five levels of irrigation on two citrus species (‘Red Ruby’ grapefruit (Citrus paradisi) and ‘Valencia’ sweet orange (Citrus sinensis (L.) Osbeck)). Images were taken using a portable thermal camera and analyzed using open-source software. We determined canopy temperature, leaf photosynthesis and transpiration, and plant biomass. The results indicated a positive relationship between the amount of water applied and the temperature response of plants exposed to different water levels. Grapefruit and sweet orange plants that received less water and were submitted to water restrictions showed higher canopy temperatures than the air (up to 6 °C). The thermal images easily identified water-stressed plants. Our proof-of-concept study allowed quickly obtaining the canopy temperature using readily available equipment and can be used as a tool to assess citrus water status in one-year-old citrus plants in greenhouses and perhaps in commercial operations with mature trees in the field after specific experimentation. This technique, coupled with an automated system, can be used for irrigation scheduling. Thus, setting up a limit temperature is necessary to start the irrigation system and set the irrigation time based on the soil water content. To use this process on a large scale, it is necessary to apply an automation routine to process the thermal images in real time and remove the weeds from the background to determine the canopy temperature.


1970 ◽  
Vol 8 (2) ◽  
pp. 191-194
Author(s):  
MF Ferdous ◽  
AKM Shamsuddin ◽  
D Hasna ◽  
MMR Bhuiyan

The present study was conducted with twenty bread wheat genotypes at the experimental field of Bangladesh Agricultural University (BAU), Mymensingh, during the period from November 2008 to March 2009 to assess the relationship and selection index among yield and important yield attributing characters. Days to maturity, grains per spike, 100-grain weight and harvest index showed significant and positive correlation with grain yield per plant. Path coefficient analysis suggested that grains per spike followed by 100-grain weight and effective tillers per plant contributed maximum to grain yield positively and directly. Thus, selection based on these characters might be effective for improving grain yield. Selection indices were constructed through the discriminate functions using eight characters. From the results, the highest relative efficiency was observed with the selection index based on three characters; plant height and grains per spike and grain yield per plant. The present investigation indicates that the index selection based on these three characters might be more effective and efficient for selecting high yielding wheat genotypes. Keywords: Spring wheat; Relationship; Selection index; Yield contributing characters DOI: 10.3329/jbau.v8i2.7923 J. Bangladesh Agril. Univ. 8(2): 191-194, 2010


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 285 ◽  
Author(s):  
Salima Yousfi ◽  
Adrian Gracia-Romero ◽  
Nassim Kellas ◽  
Mohamed Kaddour ◽  
Ahmed Chadouli ◽  
...  

Vegetation indices and canopy temperature are the most usual remote sensing approaches to assess cereal performance. Understanding the relationships of these parameters and yield may help design more efficient strategies to monitor crop performance. We present an evaluation of vegetation indices (derived from RGB images and multispectral data) and water status traits (through the canopy temperature, stomatal conductance and carbon isotopic composition) measured during the reproductive stage for genotype phenotyping in a study of four wheat genotypes growing under different water and nitrogen regimes in north Algeria. Differences among the cultivars were reported through the vegetation indices, but not with the water status traits. Both approximations correlated significantly with grain yield (GY), reporting stronger correlations under support irrigation and N-fertilization than the rainfed or the no N-fertilization conditions. For N-fertilized trials (irrigated or rainfed) water status parameters were the main factors predicting relative GY performance, while in the absence of N-fertilization, the green canopy area (assessed through GGA) was the main factor negatively correlated with GY. Regression models for GY estimation were generated using data from three consecutive growing seasons. The results highlighted the usefulness of vegetation indices derived from RGB images predicting GY.


2004 ◽  
Vol 55 (11) ◽  
pp. 1139 ◽  
Author(s):  
Mario Gutiérrez-Rodríguez ◽  
Matthew Paul Reynolds ◽  
José Alberto Escalante-Estrada ◽  
María Teresa Rodríguez-González

Spectral reflectance (SR) indices [NDVI (R900 – R680/R900 + R680); GNDVI (R780 – R550/R780 + R550); and water index, WI (R900/R970)]; and 6 chlorophyll indices (R740/R720, NDI = R750 – R705/R750 + R705, R780 – R710/R780 – R680, R850 – R710/R850 – R680, mND = R750 – R705/R750 + R705 – 2R445, and mSR = R750 – R445/R705 – R445) were measured with a FieldSpec spectroradiometer (Analytical Spectral Devices, Boulder, CO) on bread wheat (Triticum aestivum L.) genotypes adapted to irrigated and drought conditions to establish their relationship with yield in field-grown plots. Bread wheat genotypes from the International Maize and Wheat Improvement Center (CIMMYT) were used for this study in 3 experiments: 8 genotypes in a trial representing historical progress in yield potential, and 3 pairs of near-isolines for Lr19, both of which were grown under well-watered conditions; and the third experiment included 20 drought tolerant advanced genotypes grown under moisture stress. These were grown during the 2000 and 2001 spring cycles in a temperate, high radiation environment in Obregón, NW México. The 9 SR indices were determined during grain filling along with canopy temperature depression (CTD), flag leaf photosynthetic rate, and chlorophyll estimates using a SPAD meter. The relationship of SR indices with grain yield and biomass fitted best with a linear model. NDVI and GNDVI showed positive relationships with grain yield and biomass under well-irrigated conditions (r = 0.35–0.92), whereas NDVI showed a stronger association with yield under drought conditions (r = 0.54). The 6 chlorophyll indices showed significant association with yield and biomass of wheat genotypes grown under well-irrigated conditions (r = 0.39–0.90). The association between chlorophyll indices and chlorophyll estimates was correlated (r = 0.38–0.92), as was the case for photosynthetic rate (r = 0.36–0.75). WI showed a significant relationship with grain yield in wheat genotypes grown under drought stress conditions (r = 0.60) as well as with grain yield and biomass under well-irrigated conditions (r = 0.52–0.91). The relationship between WI and CTD was significant (P ≤ 0.05) in both environments (r = 0.44–0.84). In conclusion, the SR showed potential for identifying higher-yielding genotypes in a breeding program under dry or irrigated conditions, as well as for estimating some physiological parameters.


Sign in / Sign up

Export Citation Format

Share Document