scholarly journals A Robust Transmission Scheduling Approach for Internet of Things (IoT) Sensing Service with Energy Harvesting

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3090
Author(s):  
Jie Hao ◽  
Jing Chen ◽  
Ran Wang ◽  
Yi Zhuang ◽  
Baoxian Zhang

Maximizing the utility under energy constraint is critical in an Internet of Things (IoT) sensing service, in which each sensor harvests energy from THE ambient environment and uses it for sensing and transmitting the measurements to an application server. Such a sensor is required to maximize its utility under THE harvested energy constraint, i.e., perform sensing and transmission at the highest rate allowed by the harvested energy constraint. Most existing works assumed a sophisticated model for harvested energy, but neglected the fact that the harvested energy is random in reality. Considering the randomness of the harvested energy, we focus on the transmission scheduling issue and present a robust transmission scheduling optimization approach that is able to provide robustness against randomness. We firstly formulate the transmission scheduling optimization problem subject to energy constraints with random harvested energy. We then introduce a flexible model to profile the harvested energy so that the constraints with random harvested energy are transformed into linear constraints. Finally, the transmission scheduling optimization problem can be solved traditionally. The experimental results demonstrate that the proposed approach is capable of providing a good trade-off between service flexibility and robustness.

2020 ◽  
Vol 16 (6) ◽  
pp. 155014772092982
Author(s):  
Pooya Hejazi ◽  
Gianluigi Ferrari

Internet of Things integrates various technologies, including wireless sensor networks, edge computing, and cloud computing, to support a wide range of applications such as environmental monitoring and disaster surveillance. In these types of applications, IoT devices operate using limited resources in terms of battery, communication bandwidth, processing, and memory capacities. In this context, load balancing, fault tolerance, and energy and memory efficiency are among the most important issues related to data dissemination in IoT networks. In order to successfully cope with the abovementioned issues, two main approaches—data-centric storage and distributed data storage—have been proposed in the literature. Both approaches suffer from data loss due to memory and/or energy depletion in the storage nodes. Even though several techniques have been proposed so far to overcome the abovementioned problems, the proposed solutions typically focus on one issue at a time. In this article, we propose a cross-layer optimization approach to increase memory and energy efficiency as well as support load balancing. The optimization problem is a mixed-integer nonlinear programming problem, and we solve it using a genetic algorithm. Moreover, we integrate the data-centric storage features into distributed data storage mechanisms and present a novel heuristic approach, denoted as Collaborative Memory and Energy Management, to solve the underlying optimization problem. We also propose analytical and simulation frameworks for performance evaluation. Our results show that the proposed method outperforms the existing approaches in various IoT scenarios.


Author(s):  
Xiaofei Zhang ◽  
Juncheng Geng ◽  
Jianwei Ma ◽  
Hao Liu ◽  
Shuangxia Niu ◽  
...  

AbstractWith the scale of Internet of Things (IoT) continues to increase, it brings big challenges for service selection in a large-scale IoT. For solving this problem, a service selection method based on the enhanced genetic algorithm is proposed in this paper. To decrease the scale of service selection, this paper uses the lexicographic optimization approach and quality of service (QoS) constraint relaxation technique to find the candidate service with height QoS. Then, the IoT service selection problem is transformed into a single-objective optimization problem adopting a simple weighting method, and the final composite service meeting the user's QoS needs are obtained from the candidate service. The simulation results show that the proposed algorithm can efficiently and quickly achieve a composite service satisfying user's QoS needs, and is more suitable for solving the service composite problem in large-scale IoT services.


2020 ◽  
Vol 17 (10) ◽  
pp. 241-248
Author(s):  
Li Wang ◽  
Shuaijun Liu ◽  
Weidong Wang ◽  
Zhiyan Fan

1991 ◽  
Vol 15 (3-4) ◽  
pp. 357-379
Author(s):  
Tien Huynh ◽  
Leo Joskowicz ◽  
Catherine Lassez ◽  
Jean-Louis Lassez

We address the problem of building intelligent systems to reason about linear arithmetic constraints. We develop, along the lines of Logic Programming, a unifying framework based on the concept of Parametric Queries and a quasi-dual generalization of the classical Linear Programming optimization problem. Variable (quantifier) elimination is the key underlying operation which provides an oracle to answer all queries and plays a role similar to Resolution in Logic Programming. We discuss three methods for variable elimination, compare their feasibility, and establish their applicability. We then address practical issues of solvability and canonical representation, as well as dynamical updates and feedback. In particular, we show how the quasi-dual formulation can be used to achieve the discriminating characteristics of the classical Fourier algorithm regarding solvability, detection of implicit equalities and, in case of unsolvability, the detection of minimal unsolvable subsets. We illustrate the relevance of our approach with examples from the domain of spatial reasoning and demonstrate its viability with empirical results from two practical applications: computation of canonical forms and convex hull construction.


Author(s):  
S Yoo ◽  
C-G Park ◽  
S-H You ◽  
B Lim

This article presents a new methodology to generate optimal trajectories in controlling an automated excavator. By parameterizing all the actuator displacements with B-splines of the same order and with the same number of control points, the coupled actuator limits, associated with the maximum pump flowrate, are described as the finite-dimensional set of linear constraints to the motion optimization problem. Several weighting functions are introduced on the generalized actuator torque so that the solution to each optimization problems contains the physical meaning. Numerical results showing that the generated motions of the excavator are fairly smooth and effectively save energy, which can prevent mechanical wearing and possibly save fuel consumption, are presented. A typical operator's manoeuvre from experiments is referred to bring out the standing features of the optimized motion.


2017 ◽  
Vol 52 (14) ◽  
pp. 1971-1986 ◽  
Author(s):  
T Vo-Duy ◽  
T Truong-Thi ◽  
V Ho-Huu ◽  
T Nguyen-Thoi

The paper presents an efficient numerical optimization approach to deal with the optimization problem for maximizing the fundamental frequency of laminated functionally graded carbon nanotube-reinforced composite quadrilateral plates. The proposed approach is a combination of the cell-based smoothed discrete shear gap method (CS-DSG3) for analyzing the first natural frequency of the functionally graded carbon nanotube reinforced composite plates and a global optimization algorithm, namely adaptive elitist differential evolution algorithm (aeDE), for solving the optimization problem. The design variables are the carbon nanotube orientation in the layers and constrained in the range of integer numbers belonging to [−900 900]. Several numerical examples are presented to investigate optimum design of quadrilateral laminated functionally graded carbon nanotube reinforced composite plates with various parameters such as carbon nanotube distribution, carbon nanotube volume fraction, boundary condition and number of layers.


2006 ◽  
Vol 10 ◽  
pp. 143-152 ◽  
Author(s):  
Martin Huber ◽  
Horst Baier

An optimization approach is derived from typical design problems of hybrid material structures, which provides the engineer with optimal designs. Complex geometries, different materials and manufacturing aspects are handled as design parameters using a genetic algorithm. To take qualitative information into account, fuzzy rule based systems are utilized in order to consider all relevant aspects in the optimization problem. This paper shows results for optimization tasks on component and structural level.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7449
Author(s):  
Fangqiuzi He ◽  
Junfeng Xu ◽  
Jinglin Zhong ◽  
Guang Chen ◽  
Shixin Peng

In order to realize the intelligent management of a power materials warehouse, the Internet of Things based on wireless sensor networks (WSNs) is a promising effective solution. Considering the limited battery capacity of sensor nodes, the optimization of the topology control and the determination of the amount of collected data are critical for prolonging the survival time of WSNs and increasing the satisfaction of the warehouse supplier. Therefore, in this paper, an optimization problem on sensor association and acquisition data satisfaction is proposed, and the subproblem of the sensor association is modeled as the knapsack problem. To cope with it, the block coordinate descent method is used to obtain the suboptimal solution. A sensor association scheme based on the ant colony algorithm (ACO) is proposed, and the upper and lower bounds of this optimization problem are also obtained. After this, a cluster head selection algorithm is given to find the optimal cluster head. Finally, the experimental simulations show that the algorithms proposed in this paper can effectively improve the energy utilization of WSNs to ensure the intelligent management of a power materials warehouse.


Author(s):  
Hao Yue ◽  
David Bassir ◽  
Hicham Medromi ◽  
Hua Ding ◽  
Khaoula Abouzaid

In order to overcome the propre disadvantages of FW(Fixed-Wing) and VTOL(Vertical-Taking-Off-and-Landing) UAV (Unmanned Aerial Vehicle) and extend its application, the hybrid drone is invested more in recent years by researchers and several classifications are developed on the part of dual system. In this article, an innovative hybrid UAV is raised and studied by introducing the canard configuration that is coupled with conventional delta wing as well as winglet structure. Profited by Computational Fluid Dynamics (CFD) and Response Surface Method (RSM), a multilevel optimization approach is practically presented and concerned in terms of cruise flight mode: adopted by an experienced-based distribution strategy, the total lift object is respectively assigned into the delta wing (90–95%) and canard wing(5–10%) which is applied into a two-step optimization: the first optimization problem is solved only with the parameters concerned with delta wing afterwards the second optimization is successively concluded to develop the canard configuration considering the optimized delta wing conception. Above all, the optimal conceptual design of the delta and canard wing is realized by achieving the lift goal with less drag performance in cruise mode.


Sign in / Sign up

Export Citation Format

Share Document