scholarly journals Quasi Similar Routes of NO2 and NO Sensing by Nanocrystalline WO3: Evidence by In Situ DRIFT Spectroscopy

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3405 ◽  
Author(s):  
Lili Yang ◽  
Artem Marikutsa ◽  
Marina Rumyantseva ◽  
Elizaveta Konstantinova ◽  
Nikolay Khmelevsky ◽  
...  

Tungsten oxide is a renowned material for resistive type gas sensors with high sensitivity to nitrogen oxides. Most studies have been focused on sensing applications of WO3 for the detection of NO2 and a sensing mechanism has been established. However, less is known about NO sensing routes. There is disagreement on whether NO is detected as an oxidizing or reducing gas, due to the ambivalent redox behavior of nitric oxide. In this work, nanocrystalline WO3 with different particle size was synthesized by aqueous deposition of tungstic acid and heat treatment. A high sensitivity to NO2 and NO and low cross-sensitivities to interfering gases were established by DC-resistance measurements of WO3 sensors. Both nitrogen oxides were detected as the oxidizing gases. Sensor signals increased with the decrease of WO3 particle size and had similar dependence on temperature and humidity. By means of in situ infrared (DRIFT) spectroscopy similar interaction routes of NO2 and NO with the surface of tungsten oxide were unveiled. Analysis of the effect of reaction conditions on sensor signals and infrared spectra led to the conclusion that the interaction of WO3 surface with NO was independent of gas-phase oxidation to NO2.

2006 ◽  
Vol 915 ◽  
Author(s):  
Thorsten Sahm ◽  
Weizhi Rong ◽  
Nicolae Barsan ◽  
Lutz Mädler ◽  
Sheldon K. Friedlander ◽  
...  

AbstractGas sensors based on tin dioxide nanoparticles show high sensitivity to reducing and oxidizing gases. Dry aerosol synthesis applying the flame spray pyrolysis was used for manufacture and directly (in-situ) deposit nanoparticles on sensor substrates. For the first time this technique has been used to synthesize a combination of two stacked porous layers for gas sensor fabrication. Compared to state-of-the-art techniques, aerosol technology provides a direct and versatile method to produce homogeneous nanoparticle films. Two different sensing layers were deposited directly on interdigital ceramic substrates. These porous bottom layers consisted either of pure tin dioxide or palladium doped tin dioxide. The top layer was a palladium doped alumina nanoparticle film which served as a chemical filter. The fabricated gas sensors were tested with methane, CO and ethanol. In case of CH4 detection, the pure tin dioxide sensor with the Pd/Al2O3 filter layer showed higher sensor signals and significantly improved analyte selectivity with respect to water vapor compared to single tin dioxide films. At temperatures up to 250°C the Pd-doping of the tin dioxide strongly increased the sensitivity to all gases. At higher temperatures the sensor signal significantly decreased for the Pd/SnO2 sensor with a Pd/Al2O3 filter on top indicating high catalytic activity.


2005 ◽  
Vol 44 (12) ◽  
pp. 1885-1895 ◽  
Author(s):  
Bryan A. Baum ◽  
Andrew J. Heymsfield ◽  
Ping Yang ◽  
Sarah T. Bedka

Abstract This study reports on the use of in situ data obtained in midlatitude and tropical ice clouds from airborne sampling probes and balloon-borne replicators as the basis for the development of bulk scattering models for use in satellite remote sensing applications. Airborne sampling instrumentation includes the two-dimensional cloud (2D-C), two-dimensional precipitation (2D-P), high-volume precipitation spectrometer (HVPS), cloud particle imager (CPI), and NCAR video ice particle sampler (VIPS) probes. Herein the development of a comprehensive set of microphysical models based on in situ measurements of particle size distributions (PSDs) is discussed. Two parameters are developed and examined: ice water content (IWC) and median mass diameter Dm. Comparisons are provided between the IWC and Dm values derived from in situ measurements obtained during a series of field campaigns held in the midlatitude and tropical regions and those calculated from a set of modeled ice particles used for light-scattering calculations. The ice particle types considered in this study include droxtals, hexagonal plates, solid columns, hollow columns, aggregates, and 3D bullet rosettes. It is shown that no single habit accurately replicates the derived IWC and Dm values, but a mixture of habits can significantly improve the comparison of these bulk microphysical properties. In addition, the relationship between Dm and the effective particle size Deff, defined as 1.5 times the ratio of ice particle volume to projected area for a given PSD, is investigated. Based on these results, a subset of microphysical models is chosen as the basis for the development of ice cloud bulk scattering models in Part II of this study.


Author(s):  
Suraj Mathur

This prospective study was done in the Department of Radio diagnosis Govt. Medical College, Kozhikode. A total of 65 patients who were referred to our department with clinical suspicion of endometrial lesions and incidentally detected endometrial lesions on ultrasonography underwent transvaginal ultrasound and subsequent Imaging evaluation of pelvis MRI has very high sensitivity (95%) and specificity (98%) and is almost as accurate (97%) as histopathology in differentiating benign from malignant lesions. Addition of DWI with ADC mapping to conventional MRI increases its accuracy even more. However there is inherent limitation to MRI in detecting carcinoma in situ and micrometastasis. Keywords: TVS, MRI, Sensitivity, Specificity, Histopathology.


Author(s):  
Kranti Singh ◽  
Surajpal Verma ◽  
Shyam Prasad ◽  
Indu Bala

Ciprofloxacin hydrochloride loaded Eudragit RS100 nanoparticles were prepared by using w/o/w emulsification (multiple emulsification) solvent evaporation followed by drying of nanoparticles at 50°C. The nanoparticles were further incorporated into the pH-triggered in situ gel forming system which was prepared using Carbopol 940 in combination with HPMC as viscosifying agent. The developed nanoparticles was evaluated for particle size, zeta potential value and loading efficiency; nanoparticle incorporated in situ gelling system was evaluated for pH, clarity, gelling strength, rheological studies, in-vitro release studies and ex-vivo precorneal permeation studies. The nanopaticle showed the mean particle size varying between 263.5nm - 325.9 nm with the mean zeta potential value of -5.91 mV to -8.13 mV and drug loading capacity varied individually between 72.50% to 98.70% w/w. The formulation was clear with no suspended particles, showed good gelling properties. The gelling was quick and remained for longer time period. The developed formulation was therapeutically efficacious, stable and non-irritant. It provided the sustained release of drug over a period of 8-10 hours.


Fuel ◽  
2021 ◽  
Vol 291 ◽  
pp. 120270
Author(s):  
Seo Yeong Kang ◽  
Su Been Seo ◽  
Eun Sol Go ◽  
Hyung Woo Kim ◽  
Sang In Keel ◽  
...  

Small Methods ◽  
2021 ◽  
pp. 2100202
Author(s):  
Tiantian Dai ◽  
Zanhong Deng ◽  
Xiaodong Fang ◽  
Huadong Lu ◽  
Yong He ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lenka Ulrychová ◽  
Pavel Ostašov ◽  
Marta Chanová ◽  
Michael Mareš ◽  
Martin Horn ◽  
...  

Abstract Background The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host–parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. Methodology Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. Results FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. Conclusions The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host–parasite interactions. Graphic abstract


2001 ◽  
Vol 82 (2) ◽  
pp. 350-354 ◽  
Author(s):  
Yuhong Xiao ◽  
Shigemi Sato ◽  
Takaaki Oguchi ◽  
Kaori Kudo ◽  
Yoshihito Yokoyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document