scholarly journals A Dynamic Access Probability Adjustment Strategy for Coded Random Access Schemes

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4206
Author(s):  
Sun ◽  
Liu ◽  
Paolini

In this paper, a dynamic access probability adjustment strategy for coded random accessschemes based on successive interference cancellation (SIC) is proposed. The developed protocolconsists of judiciously tuning the access probability, therefore controlling the number of transmittingusers, in order to resolve medium access control (MAC) layer congestion states in high load conditions.The protocol is comprised of two steps: Estimation of the number of transmitting users during thecurrent MAC frame and adjustment of the access probability to the subsequent MAC frame, based onthe performed estimation. The estimation algorithm exploits a posteriori information, i.e., availableinformation at the end of the SIC process, in particular it relies on both the frame configuration(residual number of collision slots) and the recovered users configuration (vector of recovered users)to effectively reduce mean-square error (MSE). During the access probability adjustment phase, atarget load threshold is employed, tailored to the packet loss rate in the finite frame length case.Simulation results revealed that the developed estimator was able to achieve remarkable performanceowing to the information gathered from the SIC procedure. It also illustrated how the proposeddynamic access probability strategy can resolve congestion states efficiently.

Author(s):  
Nor-Syahidatul N. Ismail ◽  
Sharifah H. S. Ariffin ◽  
N. M. Abdul Latiff ◽  
Farizah Yunus ◽  
Norshiela Fisal

Wireless Sensor Networks (WSNs) have been attracting increasing interest lately from the research community and industry. The main reason for such interest is the fact that WSNs are considered a promising means of low power and low cost communication that can be easily deployed. Nowadays, the advanced protocol design in WSNs has enhanced their capability to transfer video in the wireless medium. In this chapter, a comprehensive study of Medium Access Control (MAC) and MPEG-4 video transmission is presented. Various classifications of MAC protocols are explained such as random access, schedule access, and hybrid access. In addition, a hybrid MAC layer protocol design is proposed, which combines Carrier Sense Multiple Access (CSMA) and unsynchronized Time Division Multiple Access (TDMA) protocols using a token approach protocol. The main objective of this chapters is to present the design of a MAC layer that can support video transfer between nodes at low power consumption and achieve the level of quality of service (QoS) required by video applications.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4194
Author(s):  
Fulvio Babich ◽  
Giulia Buttazzoni ◽  
Francesca Vatta ◽  
Massimiliano Comisso

This study proposes a set of novel random access protocols combining Packet Repetition (PR) schemes, such as Contention Resolution Diversity Slotted Aloha (CRDSA) and Irregular Repetition SA (IRSA), with Non Orthogonal Multiple Access (NOMA). Differently from previous NOMA/CRDSA and NOMA/IRSA proposals, this work analytically derives the energy levels considering two realistic elements: the residual interference due to imperfect Interference Cancellation (IC), and the presence of requirements on the power spent for the transmission. More precisely, the energy-limited scenario is based on the relationship between the average available energy and the selected code modulation pair, thus being of specific interest for the implementation of the Internet of Things (IoT) technology in forthcoming fifth-generation (5G) systems. Moreover, a theoretical model based on the density evolution method is developed and numerically validated by extensive simulations to evaluate the limiting throughput and to explore the actual performance of different NOMA/PR schemes in energy-constrained scenarios.


2013 ◽  
Vol 31 (11) ◽  
pp. 2387-2396 ◽  
Author(s):  
Chongbin Xu ◽  
Li Ping ◽  
Peng Wang ◽  
Sammy Chan ◽  
Xiaokang Lin

2012 ◽  
Vol 8 (1) ◽  
pp. 834784 ◽  
Author(s):  
Joseph Kabara ◽  
Maria Calle

Many researchers employ IEEE802.15.4 as communication technology for wireless sensor networks (WSNs). However, medium access control (MAC) layer requirements for communications in wireless sensor networks (WSNs) vary because the network is usually optimized for specific applications. Thus, one particular standard will hardly be suitable for every possible application. Two general categories of MAC techniques exist: contention based and schedule based. This paper explains these two main approaches and includes examples of each one. The paper concludes with a unique performance analysis and comparison of benefits and limitations of each protocol with respect to WSNs.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5024
Author(s):  
Dong Min Kim ◽  
Seong-Lyun Kim

In this paper, we investigate the possibility of the cross-layer design of a distributed random access scheme with considering physical (PHY) and multiple access control (MAC) layers, which utilizes the interference cancellation technique. In this regard, we propose a new multiple access protocol, named carrier sense non-orthogonal multiple access (CSNOMA). We consider the spatially randomly distributed interferers to realistically capture the effect of interference. The proposed protocol shows better area spectral efficiency than carrier sense multiple access (CSMA), as the node density increases. We also present a practical signaling design compatible with IEEE 802.11 DCF mode.


10.5772/9476 ◽  
2010 ◽  
Author(s):  
Jesus Alonso-Zarate ◽  
Elli Kartsakli ◽  
Luis Alonso ◽  
Christos Verikoukis

Sign in / Sign up

Export Citation Format

Share Document