scholarly journals Method for Determining the Plasmon Resonance Wavelength in Fiber Sensors Based on Tilted Fiber Bragg Gratings

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4245 ◽  
Author(s):  
Egor Manuylovich ◽  
Kirill Tomyshev ◽  
Oleg V. Butov

Surface plasmon resonance-based fiber-optic sensors are of increasing interest in modern sensory research, especially for chemical and biomedical applications. Special attention deserves to be given to sensors based on tilted fiber Bragg gratings, due to their unique spectral properties and potentially high sensitivity and resolution. However, the principal task is to determine the plasmon resonance wavelength based on the spectral characteristics of the sensor and, most importantly, to measure changes in environmental parameters with high resolution, while the existing indirect methods are only useable in a narrow spectral range. In this paper, we present a new approach to solving this problem, based on the original method of determining the plasmon resonance spectral position in the automatic mode by precisely calculating the constriction location on the transmission spectrum of the sensor. We also present an experimental comparison of various data processing methods in both a narrow and a wide range of the refractive indexes. Application of our method resulted in achieving a resolution of up to 3 × 10−6 in terms of the refractive index.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2097
Author(s):  
Yuan-Fong Chou Chau ◽  
Chung-Ting Chou Chao ◽  
Siti Zubaidah Binti Haji Jumat ◽  
Muhammad Raziq Rahimi Kooh ◽  
Roshan Thotagamuge ◽  
...  

This work proposed a multiple mode Fano resonance-based refractive index sensor with high sensitivity that is a rarely investigated structure. The designed device consists of a metal–insulator–metal (MIM) waveguide with two rectangular stubs side-coupled with an elliptical resonator embedded with an air path in the resonator and several metal defects set in the bus waveguide. We systematically studied three types of sensor structures employing the finite element method. Results show that the surface plasmon mode’s splitting is affected by the geometry of the sensor. We found that the transmittance dips and peaks can dramatically change by adding the dual air stubs, and the light–matter interaction can effectively enhance by embedding an air path in the resonator and the metal defects in the bus waveguide. The double air stubs and an air path contribute to the cavity plasmon resonance, and the metal defects facilitate the gap plasmon resonance in the proposed plasmonic sensor, resulting in remarkable characteristics compared with those of plasmonic sensors. The high sensitivity of 2600 nm/RIU and 1200 nm/RIU can simultaneously achieve in mode 1 and mode 2 of the proposed type 3 structure, which considerably raises the sensitivity by 216.67% for mode 1 and 133.33% for mode 2 compared to its regular counterpart, i.e., type 2 structure. The designed sensing structure can detect the material’s refractive index in a wide range of gas, liquids, and biomaterials (e.g., hemoglobin concentration).


2007 ◽  
Vol 13 (4) ◽  
pp. 281-290 ◽  
Author(s):  
A. Cusano ◽  
A. Iadicicco ◽  
D. Paladino ◽  
S. Campopiano ◽  
A. Cutolo ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 946
Author(s):  
Qi Guo ◽  
Zhixu Jia ◽  
Xuepeng Pan ◽  
Shanren Liu ◽  
Zhennan Tian ◽  
...  

In this paper, a sapphire-derived fiber (SDF) with a core diameter of 10 μm and a cladding diameter of 125 μm is fabricated by the melt-in-tube method, and fiber Bragg gratings (FBGs) with reflectivity over 80% are prepared by the femtosecond laser point-by-point direct writing method. By analyzing the refractive index distribution and reflection spectral characteristics of the SDF, it can be seen that the SDF is a graded refractive index few-mode fiber. In order to study the element composition of the SDF core, the end-face element distribution of the SDF is analyzed, which indicates that element diffusion occurred between the core and the cladding materials. The temperature and stress of the SDF gratings are measured and the highest temperature is tested to 1000 °C. The temperature and strain sensitivities are 15.64 pm/°C and 1.33 pm/με, respectively, which are higher than the temperature sensitivity of the quartz single-mode fiber. As a kind of special fiber, the SDF expands the application range of sapphire fiber, and has important applications in the fields of high-temperature sensing and high-power lasers.


Aerospace ◽  
2020 ◽  
Vol 7 (9) ◽  
pp. 138
Author(s):  
Aris A. Ikiades

Fiber Bragg grating (FBG) sensors have been widely used for measurements of strain and temperature in a host of different applications, including aerospace in composite wings, fuselage structures, and other critical components. Here, we report on a method to measure highly localized intense stress fields, generated at the initialization point of a crack, or crack-tip, using Fiber Bragg Gratings (FBG) inscribed in highly photosensitive hydrogenated germanium and boron co-doped fiber. From the spectral characteristics of short and long FBGs, bonded on a test aluminum coupon with a crack, which simulated damaged skins of an aircraft, the local stresses near the cracks were measured and assessed. As a case study, bespoke composite repair patches were designed and bonded on a coupon, incorporating a number of gratings to monitor the stress distribution with applied force in the composite patch, near the crack.


Sign in / Sign up

Export Citation Format

Share Document