scholarly journals Requirement Assessment of the Relative Spatial Accuracy of a Motion-Constrained GNSS/INS in Shortwave Track Irregularity Measurement

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5296 ◽  
Author(s):  
Quan Zhang ◽  
Qijin Chen ◽  
Xiaoji Niu ◽  
Chuang Shi

Modern railway track health monitoring requires high accuracy measurements to ensure comfort and safety. Although Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) integration has been extended to track geometry measurements to improve the work efficiency, it has been questioned due to its positioning accuracy at the centimeter or millimeter level. We propose the relative spatial accuracy based on the accuracy requirement of track health monitoring. A requirement assessment of the spatial relative accuracy is conducted for shortwave track irregularity measurements based on evaluation indicators and relative accuracy calculations. The threshold values of the relative spatial accuracy that satisfy the constraints of shortwave track irregularity measurements are derived. Motion-constrained GNSS/INS integration is performed to improve the navigation accuracy considering the dynamic characteristics of the track geometry measurement trolley. The results of field tests show that the mean square error and the Allan deviation of the relative position errors of motion-constrained GNSS/INS integration are smaller than 0.67 mm and 0.16 mm, respectively, which indicates that this approach meets the accuracy requirements of shortwave track irregularities, especially vertical irregularities. This work can provide support for the application of GNSS/INS systems in track irregularity measurement.

2019 ◽  
Vol 9 (20) ◽  
pp. 4347 ◽  
Author(s):  
Wladyslaw Koc ◽  
Cezary Specht ◽  
Jacek Szmaglinski ◽  
Piotr Chrostowski

At present, the problem of rail routes reconstruction in a global reference system is increasingly important. This issue is called Absolute Track Geometry, and its essence is the determination of the axis of railway tracks in the form of Cartesian coordinates of a global or local coordinate system. To obtain such a representation of the track centerline, the measurement methods are developed in many countries mostly by the using global navigation satellite system (GNSS) techniques. The accuracy of this type of measurement in favorable conditions reaches one centimeter. However, some specific conditions cause the additional supporting measurements with a use of such instruments as tachymetry, odometers, or accelerometers to be needed. One of the common issues of track axis reconstruction is transforming the measured GNSS antenna coordinates to the target position, i.e., to the place between rails on the level of rail heads. The authors in their previous works described the developed methodology, while this article presents a method of determining the correction of horizontal coordinates for measurements in arc sections of the railway track. The presence of a cant causes the antenna’s center to move away from the track axis, and for this reason, the results must be corrected. This article presents a method of calculation of mentioned corrections for positions obtained from mobile satellite surveying with additional inertial measurement. The algorithm presented in the article and its implementation have been illustrated on an example of a complex geometric layout, where cant transitions exist without transition curves in horizontal plane. Such a layout is not preferable due to the additional accelerations and their changes. However, it allows the verification of the presented methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jia Chaolong ◽  
Xu Weixiang ◽  
Wei Lili ◽  
Wang Hanning

Good track geometry state ensures the safe operation of the railway passenger service and freight service. Railway transportation plays an important role in the Chinese economic and social development. This paper studies track irregularity standard deviation time series data and focuses on the characteristics and trend changes of track state by applying clustering analysis. Linear recursive model and linear-ARMA model based on wavelet decomposition reconstruction are proposed, and all they offer supports for the safe management of railway transportation.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Peng Xu ◽  
Rengkui Liu ◽  
Quanxin Sun ◽  
Futian Wang

In recent years, with axle loads, train loads, transport volume, and travel speed constantly increasing and railway network steadily lengthening, shortcomings of current maintenance strategies are getting to be noticed from an economical and safety perspective. To overcome the shortcomings, permanent-of-way departments throughout the world have given a considerable attention to an ideal maintenance strategy which is to carry out appropriate maintenances just in time on track locations really requiring maintenance. This strategy is simplified as the condition-based maintenance (CBM) which has attracted attentions of engineers of many industries in the recent 70 years. To implement CBM for track irregularity, there are many issues which need to be addressed. One of them focuses on predicting track irregularity of each day in a future short period. In this paper, based on track irregularity evolution characteristics, a Short-Range Prediction Model was developed to this aim and is abbreviated to TI-SRPM. Performance analysis results for TI-SRPM illustrate that track irregularity amplitude predictions on sampling points by TI-SRPM are very close to their measurements by Track Geometry Car.


2014 ◽  
Vol 638-640 ◽  
pp. 1224-1228 ◽  
Author(s):  
Ji Yang Li ◽  
Lin Ya Liu ◽  
Dong Hua Kou

Irregularity is the locomotive and the main excitation source of vibration, is directly related to the smooth running of the train, safety and comfort, is to control the maximum operating speed of the train one of the main factors. The statistic specimen was collected by track geometry inspection car from Wuhan-Guangzhou high-speed rail. Based on the stationarity test of the specimen, Fast Fourier Transform (FFT) method was used to evaluate the spectrum of the whole specimen space. The power spectrum density (PSD) and related functions of track irregularity were obtained by MATLAB program. We analyzed it by comparing the fitting curve of the national speed lines and fitting curve of Qinhuangdao-Shenyang dedicated passenger railway line, by comparison, the Wuhan-Guangzhou high-speed railway track irregularity is much better than the national speed lines and Qinhuangdao-Shenyang dedicated passenger railway line. The parameter values of PSD fitting curve for track irregularity are obtained by the nonlinear curve-fitting algorithm in the least-squares sense, which has referencing value to maintenance high-speed rail.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Qijin Chen ◽  
Quan Zhang ◽  
Xiaoji Niu ◽  
Jingnan Liu

AbstractAn aided Inertial Navigation System (INS) is increasingly exploited in precise engineering surveying, such as railway track irregularity measurement, where a high relative measurement accuracy rather than absolute accuracy is emphasized. However, how to evaluate the relative measurement accuracy of the aided INS has rarely been studied. We address this problem with a semi-analytical method to analyze the relative measurement error propagation of the Global Navigation Satellite System (GNSS) and INS integrated system, specifically for the railway track irregularity measurement application. The GNSS/INS integration in this application is simplified as a linear time-invariant stochastic system driven only by white Gaussian noise, and an analytical solution for the navigation errors in the Laplace domain is obtained by analyzing the resulting steady-state Kalman filter. Then, a time series of the error is obtained through a subsequent Monte Carlo simulation based on the derived error propagation model. The proposed analysis method is then validated through data simulation and field tests. The results indicate that a 1 mm accuracy in measuring the track irregularity is achievable for the GNSS/INS integrated system. Meanwhile, the influences of the dominant inertial sensor errors on the final measurement accuracy are analyzed quantitatively and discussed comprehensively.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1386 ◽  
Author(s):  
Levent E. Aygun ◽  
Vivek Kumar ◽  
Campbell Weaver ◽  
Matthew Gerber ◽  
Sigurd Wagner ◽  
...  

Damage significantly influences response of a strain sensor only if it occurs in the proximity of the sensor. Thus, two-dimensional (2D) sensing sheets covering large areas offer reliable early-stage damage detection for structural health monitoring (SHM) applications. This paper presents a scalable sensing sheet design consisting of a dense array of thin-film resistive strain sensors. The sensing sheet is fabricated using flexible printed circuit board (Flex-PCB) manufacturing process which enables low-cost and high-volume sensors that can cover large areas. The lab tests on an aluminum beam showed the sheet has a gauge factor of 2.1 and has a low drift of 1.5 μ ϵ / d a y . The field test on a pedestrian bridge showed the sheet is sensitive enough to track strain induced by the bridge’s temperature variations. The strain measured by the sheet had a root-mean-square (RMS) error of 7 μ ϵ r m s compared to a reference strain on the surface, extrapolated from fiber-optic sensors embedded within the bridge structure. The field tests on an existing crack showed that the sensing sheet can track the early-stage damage growth, where it sensed 600 μ ϵ peak strain, whereas the nearby sensors on a damage-free surface did not observe significant strain change.


2021 ◽  
Vol 11 (8) ◽  
pp. 3520
Author(s):  
Xiaopei Cai ◽  
Qian Zhang ◽  
Yanrong Zhang ◽  
Qihao Wang ◽  
Bicheng Luo ◽  
...  

In order to find out the influence of subgrade frost heave on the deformation of track structure and track irregularity of high-speed railways, a nonlinear damage finite element model for China Railway Track System III (CRTSIII) slab track subgrade was established based on the constitutive theory of concrete plastic damage. The analysis of track structure deformation under different subgrade frost heave conditions was focused on, and amplitude the limit of subgrade frost heave was put forward according to the characteristics of interlayer seams. This work is expected to provide guidance for design and construction. Subgrade frost heave was found to cause cosine-type irregularities of rails and the interlayer seams in the track structure, and the displacement in lower foundation mapping to rail surfaces increased. When frost heave occured in the middle part of the track slab, it caused the greatest amount of track irregularity, resulting in a longer and higher seam. Along with the increase in frost heave amplitude, the length of the seam increased linearly whilst its height increased nonlinearly. When the frost heave amplitude reached 35 mm, cracks appeared along the transverse direction of the upper concrete surface on the base plate due to plastic damage; consequently, the base plate started to bend, which reduced interlayer seams. Based on the critical value of track structures’ interlayer seams under different frost heave conditions, four control limits of subgrade frost heave at different levels of frost heave amplitude/wavelength were obtained.


2013 ◽  
Vol 558 ◽  
pp. 364-373 ◽  
Author(s):  
Stuart G. Taylor ◽  
Kevin M. Farinholt ◽  
Gyu Hae Park ◽  
Charles R. Farrar ◽  
Michael D. Todd ◽  
...  

This paper presents ongoing work by the authors to implement real-time structural health monitoring (SHM) systems for operational research-scale wind turbine blades. The authors have been investigating and assessing the performance of several techniques for SHM of wind turbine blades using piezoelectric active sensors. Following a series of laboratory vibration and fatigue tests, these techniques are being implemented using embedded systems developed by the authors. These embedded systems are being deployed on operating wind turbine platforms, including a 20-meter rotor diameter turbine, located in Bushland, TX, and a 4.5-meter rotor diameter turbine, located in Los Alamos, NM. The SHM approach includes measurements over multiple frequency ranges, in which diffuse ultrasonic waves are excited and recorded using an active sensing system, and the blades global ambient vibration response is recorded using a passive sensing system. These dual measurement types provide a means of correlating the effect of potential damage to changes in the global structural behavior of the blade. In order to provide a backdrop for the sensors and systems currently installed in the field, recent damage detection results for laboratory-based wind turbine blade experiments are reviewed. Our recent and ongoing experimental platforms for field tests are described, and experimental results from these field tests are presented. LA-UR-12-24691.


2021 ◽  
Vol 11 (11) ◽  
pp. 5244
Author(s):  
Xinchun Zhang ◽  
Ximin Cui ◽  
Bo Huang

The detection of track geometry parameters is essential for the safety of high-speed railway operation. To improve the accuracy and efficiency of the state detector of track geometry parameters, in this study we propose an inertial GNSS odometer integrated navigation system based on the federated Kalman, and a corresponding inertial track measurement system was also developed. This paper systematically introduces the construction process for the Kalman filter and data smoothing algorithm based on forward filtering and reverse smoothing. The engineering results show that the measurement accuracy of the track geometry parameters was better than 0.2 mm, and the detection speed was about 3 km/h. Thus, compared with the traditional Kalman filter method, the proposed design improved the measurement accuracy and met the requirements for the detection of geometric parameters of high-speed railway tracks.


Sign in / Sign up

Export Citation Format

Share Document