scholarly journals In Situ Characterization of Micro-Vibration in Natural Latex Membrane Resembling Tympanic Membrane Functionally Using Optical Doppler Tomography

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 64
Author(s):  
Daewoon Seong ◽  
Jaehwan Kwon ◽  
Deokmin Jeon ◽  
Ruchire Eranga Wijesinghe ◽  
Jaeyul Lee ◽  
...  

Non-invasive characterization of micro-vibrations in the tympanic membrane (TM) excited by external sound waves is considered as a promising and essential diagnosis in modern otolaryngology. To verify the possibility of measuring and discriminating the vibrating pattern of TM, here we describe a micro-vibration measurement method of latex membrane resembling the TM. The measurements are obtained with an externally generated audio stimuli of 2.0, 2.2, 2.8, 3.1 and 3.2 kHz, and their respective vibrations based tomographic, volumetric and quantitative evaluations were acquired using optical Doppler tomography (ODT). The micro oscillations and structural changes which occurred due to diverse frequencies are measured with sufficient accuracy using a highly sensitive ODT system implied phase subtraction method. The obtained results demonstrated the capability of measuring and analyzing the complex varying micro-vibration of the membrane according to implied sound frequency.

1995 ◽  
Vol 20 (11) ◽  
pp. 1337 ◽  
Author(s):  
X. J. Wang ◽  
T. E. Milner ◽  
J. S. Nelson

Author(s):  
Shaimaa Rabie ◽  
Ahmed Mohallel ◽  
Samer Saad Bessa ◽  
Ahmed Hafez ◽  
Amr Magdy El-Abd

Abstract Background The aim of this retrospective study was to highlight the role of adding DWI to the conventional MRCP in differentiating benign and malignant obstructive biliary pathologies. MRCP is a non-invasive modality for investigating the morphological features of the pancreaticobiliary system. It can provide indirect evidence of a malignant lesion, such as irregularity of the inner border and abrupt stenosis, with shouldering of the edge suggesting cholangiocarcinoma, while a short segment with regular margin and symmetric narrowing suggests a benign cause. Although these findings are highly sensitive, they are not specific. DWI can complement morphological information obtained by conventional MRCP by providing additional functional information concerning the alteration of tissue cellularity due to pathological processes. Results The overall accuracy of the diagnosis, sensitivity, and specificity of the conventional MRCP in differentiation between the benign and malignant biliary structures was significantly increased by combing it with the DWI. Conclusions Adding DWI to conventional MRCP significantly improved the diagnostic accuracy regarding the characterization of differentiating benign and malignant biliary strictures.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


2002 ◽  
Vol 10 (5) ◽  
pp. 1451-1458 ◽  
Author(s):  
Sophie Martel ◽  
Jean-Louis Clément ◽  
Agnès Muller ◽  
Marcel Culcasi ◽  
Sylvia Pietri

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
M. Musse ◽  
G. Hajjar ◽  
N. Ali ◽  
B. Billiot ◽  
G. Joly ◽  
...  

Abstract Background Drought is a major consequence of global heating that has negative impacts on agriculture. Potato is a drought-sensitive crop; tuber growth and dry matter content may both be impacted. Moreover, water deficit can induce physiological disorders such as glassy tubers and internal rust spots. The response of potato plants to drought is complex and can be affected by cultivar type, climatic and soil conditions, and the point at which water stress occurs during growth. The characterization of adaptive responses in plants presents a major phenotyping challenge. There is therefore a demand for the development of non-invasive analytical techniques to improve phenotyping. Results This project aimed to take advantage of innovative approaches in MRI, phenotyping and molecular biology to evaluate the effects of water stress on potato plants during growth. Plants were cultivated in pots under different water conditions. A control group of plants were cultivated under optimal water uptake conditions. Other groups were cultivated under mild and severe water deficiency conditions (40 and 20% of field capacity, respectively) applied at different tuber growth phases (initiation, filling). Water stress was evaluated by monitoring soil water potential. Two fully-equipped imaging cabinets were set up to characterize plant morphology using high definition color cameras (top and side views) and to measure plant stress using RGB cameras. The response of potato plants to water stress depended on the intensity and duration of the stress. Three-dimensional morphological images of the underground organs of potato plants in pots were recorded using a 1.5 T MRI scanner. A significant difference in growth kinetics was observed at the early growth stages between the control and stressed plants. Quantitative PCR analysis was carried out at molecular level on the expression patterns of selected drought-responsive genes. Variations in stress levels were seen to modulate ABA and drought-responsive ABA-dependent and ABA-independent genes. Conclusions This methodology, when applied to the phenotyping of potato under water deficit conditions, provides a quantitative analysis of leaves and tubers properties at microstructural and molecular levels. The approaches thus developed could therefore be effective in the multi-scale characterization of plant response to water stress, from organ development to gene expression.


Sign in / Sign up

Export Citation Format

Share Document