scholarly journals SASC: Secure and Authentication-Based Sensor Cloud Architecture for Intelligent Internet of Things

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2468 ◽  
Author(s):  
Khalid Haseeb ◽  
Ahmad Almogren ◽  
Ikram Ud Din ◽  
Naveed Islam ◽  
Ayman Altameem

Nowadays, the integration of Wireless Sensor Networks (WSN) and the Internet of Things (IoT) provides a great concern for the research community for enabling advanced services. An IoT network may comprise a large number of heterogeneous smart devices for gathering and forwarding huge data. Such diverse networks raise several research questions, such as processing, storage, and management of massive data. Furthermore, IoT devices have restricted constraints and expose to a variety of malicious network attacks. This paper presents a Secure Sensor Cloud Architecture (SASC) for IoT applications to improve network scalability with efficient data processing and security. The proposed architecture comprises two main phases. Firstly, network nodes are grouped using unsupervised machine learning and exploit weighted-based centroid vectors for the development of intelligent systems. Secondly, the proposed architecture makes the use of sensor-cloud infrastructure for boundless storage and consistent service delivery. Furthermore, the sensor-cloud infrastructure is protected against malicious nodes by using a mathematically unbreakable one-time pad (OTP) encryption scheme to provide data security. To evaluate the performance of the proposed architecture, different simulation experiments are conducted using Network Simulator (NS3). It has been observed through experimental results that the proposed architecture outperforms other state-of-the-art approaches in terms of network lifetime, packet drop ratio, energy consumption, and transmission overhead.

2020 ◽  
Vol 2 (2) ◽  
pp. 96-105
Author(s):  
Dr. Abul Bashar

The growth of the information and communication technology has led the world to experience more sophisticated service that were once thought to be a fantasy. The emergence of the internet of things has further taken the world one step ahead by enabling the tangible things around to communicate. The IOT affords to offer more advanced services by the incorporation of the wireless sensors. The collection of the information and its delivery in the platform of internet of things is taken care by the enormous number of smart devices present in it and the numerous of smart devices present cause a very high amount of data flow. The issue arises in such platforms of internet of things in handling, regulating, storing and computing the huge amount of data flow. Move over the security of the data are also uncertain. To manage all these the paper delivers a sensor cloud based architecture with highly efficient computation and the security implantation for the application of internet of things. The proposed model improves the computation capability and the security of the data by using cloud service, the machine learning and the encryption scheme. The network simulator -3 evaluates the performance of the delivered model that provides a satisfying and sustaining results than the existing methods. The experiments were carried out on the grounds of the longevity of the network, overhead in the transmission the amount of energy used and as well as the packet drop ratio. The results attained on each ground were found be 25%, 30%, 38.76% and 50.7% better compared to the state of art approaches.


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


2016 ◽  
Vol 3 (2) ◽  
pp. 75-82 ◽  
Author(s):  
Naresh Babu Bynagari

‘Industrial application of Internet of Things deals with the application of Internet of things to produce industrial services. It analyzed how industries can carry out multiple services with function remotely using IoT-connected devices. The several benefits and drawbacks to the application of IoT services were also investigated. The IoT is a network of connected systems and smart devices that use encoded networks like sensors, processors, and interactive hardware to receive, send and store data. The utilization of IoT for industrial functions will significantly improve industrial output, and in the future, more industries will come to apply IoT devices and systems for greater efficiency.  


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6761
Author(s):  
Anjan Bandyopadhyay ◽  
Vikash Kumar Singh ◽  
Sajal Mukhopadhyay ◽  
Ujjwal Rai ◽  
Fatos Xhafa ◽  
...  

In the Internet of Things (IoT) + Fog + Cloud architecture, with the unprecedented growth of IoT devices, one of the challenging issues that needs to be tackled is to allocate Fog service providers (FSPs) to IoT devices, especially in a game-theoretic environment. Here, the issue of allocation of FSPs to the IoT devices is sifted with game-theoretic idea so that utility maximizing agents may be benign. In this scenario, we have multiple IoT devices and multiple FSPs, and the IoT devices give preference ordering over the subset of FSPs. Given such a scenario, the goal is to allocate at most one FSP to each of the IoT devices. We propose mechanisms based on the theory of mechanism design without money to allocate FSPs to the IoT devices. The proposed mechanisms have been designed in a flexible manner to address the long and short duration access of the FSPs to the IoT devices. For analytical results, we have proved the economic robustness, and probabilistic analyses have been carried out for allocation of IoT devices to the FSPs. In simulation, mechanism efficiency is laid out under different scenarios with an implementation in Python.


2020 ◽  
pp. 1260-1284
Author(s):  
Laura Belli ◽  
Simone Cirani ◽  
Luca Davoli ◽  
Gianluigi Ferrari ◽  
Lorenzo Melegari ◽  
...  

The Internet of Things (IoT) is expected to interconnect billions (around 50 by 2020) of heterogeneous sensor/actuator-equipped devices denoted as “Smart Objects” (SOs), characterized by constrained resources in terms of memory, processing, and communication reliability. Several IoT applications have real-time and low-latency requirements and must rely on architectures specifically designed to manage gigantic streams of information (in terms of number of data sources and transmission data rate). We refer to “Big Stream” as the paradigm which best fits the selected IoT scenario, in contrast to the traditional “Big Data” concept, which does not consider real-time constraints. Moreover, there are many security concerns related to IoT devices and to the Cloud. In this paper, we analyze security aspects in a novel Cloud architecture for Big Stream applications, which efficiently handles Big Stream data through a Graph-based platform and delivers processed data to consumers, with low latency. The authors detail each module defined in the system architecture, describing all refinements required to make the platform able to secure large data streams. An experimentation is also conducted in order to evaluate the performance of the proposed architecture when integrating security mechanisms.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-25
Author(s):  
Shafagat Mahmudova

This article outlines the Internet of Things (IoT). The Internet of Things describes a network of physical objects, i.e., the “thing” including sensors, software, and other technologies for connection and data sharing with other devices and systems over the Internet. In other words, IoT is a relatively new technology enabling many “smart” devices to get connected, to analyze, process, and transfer data to each other and connect to a network. The article clarifies the essence of intelligent systems for the Internet of Things, and analyzes the most popular software for the IoT platform. It studies high-level systems for IoT and analyzes available literature in this field. It highlights most advanced IoT software of 2021. The article also identifies the prospects and challenges of intelligent systems for the Internet of Things. The creation of new intelligent systems for IoT and the development of technology will greatly contribute to the development of economy.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Jiangdong Lu ◽  
Dongfang Li ◽  
Penglong Wang ◽  
Fen Zheng ◽  
Meng Wang

Today, with increasing information technology such as the Internet of Things (IoT) in human life, interconnection and routing protocols need to find optimal solution for safe data transformation with various smart devices. Therefore, it is necessary to provide an enhanced solution to address routing issues with respect to new interconnection methodologies such as the 6LoWPAN protocol. The artificial neural network (ANN) is based on the structure of intelligent systems as a branch of machine interference, has shown magnificent results in previous studies to optimize security-aware routing protocols. In addition, IoT devices generate large amounts of data with variety and accuracy. Therefore, higher performance and better data handling can be achieved when this technology incorporates data for sending and receiving nodes in the environment. Therefore, this study presents a security-aware routing mechanism for IoT technologies. In addition, a comparative analysis of the relationship between previous approaches discusses with quality of service (QoS) factors such as throughput and accuracy for improving routing mechanism. Experimental results show that the use of time-division multiple access (TDMA) method to schedule the sending and receiving of data and the use of the 6LoWPAN protocol when routing the sending and receiving of data can carry out attacks with high accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1492 ◽  
Author(s):  
Pantaleone Nespoli ◽  
David Useche Pelaez ◽  
Daniel Díaz López ◽  
Félix Gómez Mármol

The Internet of Things (IoT) became established during the last decade as an emerging technology with considerable potentialities and applicability. Its paradigm of everything connected together penetrated the real world, with smart devices located in several daily appliances. Such intelligent objects are able to communicate autonomously through already existing network infrastructures, thus generating a more concrete integration between real world and computer-based systems. On the downside, the great benefit carried by the IoT paradigm in our life brings simultaneously severe security issues, since the information exchanged among the objects frequently remains unprotected from malicious attackers. The paper at hand proposes COSMOS (Collaborative, Seamless and Adaptive Sentinel for the Internet of Things), a novel sentinel to protect smart environments from cyber threats. Our sentinel shields the IoT devices using multiple defensive rings, resulting in a more accurate and robust protection. Additionally, we discuss the current deployment of the sentinel on a commodity device (i.e., Raspberry Pi). Exhaustive experiments are conducted on the sentinel, demonstrating that it performs meticulously even in heavily stressing conditions. Each defensive layer is tested, reaching a remarkable performance, thus proving the applicability of COSMOS in a distributed and dynamic scenario such as IoT. With the aim of easing the enjoyment of the proposed sentinel, we further developed a friendly and ease-to-use COSMOS App, so that end-users can manage sentinel(s) directly using their own devices (e.g., smartphone).


Author(s):  
Shashwat Pathak ◽  
Shreyans Pathak

The recent decade has seen considerable changes in the way the technology interacts with human lives and almost all the aspects of life be it personal or professional has been touched by technology. Many smart devices have also started playing a vital role in many fields and domains and the internet of things (IoT) has been the harbinger of the advent of IoT devices. IoT devices have proven to be monumental in imparting ‘smartness' in the otherwise static machines. The ability of the devices to interact and transfer the data to the internet and ultimately to the end-user has revolutionized the technological world and has brought many seemingly disparate fields in the technological purview. Out of the many fields where IoT has started gaining momentum, one of the most important ones is the healthcare sector. Many wearable smart devices have been developed over time capable to transmit real-time data to hospitals and doctors. It is essential for tracking the progress of the critically ill patients and has opened the horizon for attending patients remotely using these smart devices.


Sign in / Sign up

Export Citation Format

Share Document